
Porting CircleMUD to New Platforms

Jeremy Elson

November 17, 2002

Abstract

CircleMUD is a very portable program by design, but is not guaranteed to run on every
platform that exists. This document is for experienced programmers trying to make CircleMUD
work on their platform.

1 Introduction

CircleMUD should work on most UNIX platforms without any modifications; simply run the
“configure ” script and it should automatically detect what type of system you have and any-
thing that may be strange about it. These findings are all stored in a header file calledconf.h
which is created in the src directory from a template calledconf.h.in . A Makefile is also
created from the templateMakefile.in .

Non-UNIX platforms are a problem. Some can’t run CircleMUD at all. However, any multi-
tasking OS that has an ANSI C compiler, and supports non-blocking I/O and socket-based TCP/IP
networking, should theoretically be able to run CircleMUD; for example, OS/2, AmigaOS, Mac
OS (Classic versions; Mac OS X supports CircleMUD’s configure script from the command line),
Windows 3.11/NT/9*.

The port can be very easy or very difficult, depending mainly on whether or nor your OS
supports the Berkeley socket API. Windows 95, for example, supports Berkeley sockets with a
few modifications using the WinSock library, and OS/2 supports Berkeley sockets with no source
changes at all.

The general steps for porting CircleMUD to a non-UNIX platform are listed below. A number
of tips for porting can be found after the porting steps. Note that we have already ported Circle to
Windows 95, so if you’re confused as to how to perform some of these steps, you can look at what
we have done as an example (see the filesconf.h.win , Makefile.win andREADME.WIN).

1



Note that you should not try to do this unless you are an experienced C programmer and have
a solid, working knowledge of the system to which you are trying to port the code.

2 Porting the Code

Step 1. Create a “conf.h ” file for your system.
Copy the template “conf.h.in ” to “ conf.h ”, and then define or undefine each item as
directed by the comments and based on the characteristics of your system. To write the
conf.h file, you’ll need to know which header files are included with your system, the
return type of signals, whether or not your compiler supports the ‘const ’ keyword, and
whether or not you have various functions such ascrypt() andrandom() .
Also, you can ignore theHAVE_LIBxxx andHAVE_xxx_PROTOconstants at the end of
conf.h.in ; they are not used in the code (they are part of UNIXautoconf ).

Step 2. Create aMakefile .
Again, copy the templateMakefile.in and make any changes which may be appropri-
ate for your system. Make sure to remove the@xxx@variables such as@LIBS@, @CC@,
@NETLIB@, etc., and replace them with the appropriate values if necessary.

Step 3. Make the appropriate patches to the code so that the TCP/IP reads and writes and signal
handling are compatible with your system. This is the hardest part of porting CircleMUD.
All of the changes you will need to make will probably be in the source filecomm.c .

Step 4. Test your changes! Make sure that multiple people can log in simultaneously and that they
can all type commands at the same time. No player should ever have a “frozen” screen just
because another is waiting at a prompt. Leave the MUD up for at least 24 hours, preferably
with people playing it, to make sure that your changes are stable. Make sure that automatic
events such as zone resets, point regeneration, and corpse decomposition are being timed
correctly (a tick should be about 75 seconds). Try resetting all the zones repeatedly by typing
“zr * ” many times. Play the MUD and make sure that the basic commands (killing mobs
as a mortal, casting spells, etc.) work correctly.

Step 5. If you are satisfied that your changes work correctly, you are encouraged to submit them to
be included as part of the stock CircleMUD distribution so that future releases of Circle will
support your platform. This prevents you from re-porting the code every time a new version
is released and allows other people who use your platform to enjoy CircleMUD as well.
To submit your changes you must make a patch file using the GNU ‘diff ’ program which
can be downloaded by anonymous FTP fromftp://ftp.gnu.org:/pub/gnu/diffutils-x.
x.tar.gz . diff will create a patch file which can be later used with the ‘patch ’ utility
to incorporate your changes into the stock CircleMUD distribution. For example, if you have
a copy of stock (plain) CircleMUD in the “stock-circle ” directory, and your changes
are in “my-circle ”, you can create a patch file like this:

diff -u --new-file --recursive stock-circle/src my-circle/src > patch

2



This will create a file called ‘patch ’ with your patches. You should then try to use the
‘patch ’ program (the inverse of ‘diff ’) on a copy of stock circle to make sure that Circle
is correctly changed to incorporate your patches.
This step is very important: if you don’t create these patches correctly, your work will be
useless because no one will be able to figure out what you did! Make sure to read the docu-
mentation to ‘diff ’ and ‘patch ’ if you don’t understand how to use them.
If your patches work, CELEBRATE!!

Step 6. Write a READMEfile for your operating system that describes everything that has to be
done by another user of your operating system to get CircleMUD to compile from scratch.
You should include a section on required hardware, software, compilers, libraries, etc. Also
include detailed, step-by-step instructions on how to compile and run everything. You can
look at the otherREADMEfiles in the distribution (README.WIN, README.OS2, etc.) for
examples of what yourREADMEfile should include.

Step 7. You are done! Congratulations! Mail yourconf.h , Makefile , patches, andREADME
file to the CircleMUD Group<cdev@circlemud.org> so that they can be included in future
releases of CircleMUD. Please share your work so that other users of your OS can use Circle,
too.

3 Porting Tips

Some tips about porting:

3.1 Making your own CIRCLE_system constant

Each system to which Circle is already ported has aCIRCLE_xx constant associated with it:
CIRCLE_UNIX for plain vanilla UNIX CircleMUD,CIRCLE_WINDOWSfor MS Win95/NT,CIRCLE_OS2
for IBM OS/2, andCIRCLE_AMIGAfor the Amiga. You must use a similar constant for your sys-
tem. At the top of yourconf.h , make sure to comment out “#define CIRCLE_UNIX ” and
add “#define CIRCLE_YOUR_SYSTEM”.

3.2 ANSI C and GCC

As long as your system has an ANSI C compiler, all of the code (except forcomm.c ) should
compile with no major complaints. However, Circle was written usinggcc , and some compilers
are nitpicky about things thatgcc does not care about (and the other way around). Therefore, you
arehighly encouraged to usegcc if at all possible.gcc has been ported to a very large number of
platforms, possibly including yours, and your port will be made much easier if you usegcc . You
can downloadgcc via anonymous FTP fromftp://ftp.gnu.org:/pub/gnu/ .

3



3.3 Non-Blocking I/O

Make absolutely sure to use non-blocking I/O; i.e. make sure to enable the option so that the
read() system call will immediately return with an error if there is no data available. If you
do not use non-blocking I/O,read() will “block,” meaning it will wait infinitely for one particu-
lar player to type something even if other players are trying to enter commands. If your system does
not implement non-blocking I/O correctly, try using thePOSIX_NONBLOCK_BROKENconstant in
sysdep.h .

3.4 Timing

CircleMUD needs a fairly precise (on the order of 5 or 10 ms) timer in order to correctly schedule
events such as zone resets, point regeneration (“ticks”), corpse decomposition, and other automatic
tasks. If your system supports theselect() system call with sufficient precision, the default
timing code should work correctly. If not, you’ll have to find out which system calls your system
supports for determining how much time has passed and replace theselect() timing method.

3.5 Signals and Signal Handlers

A note about signals: Most systems don’t support the concept of signals in the same way that
UNIX does. Since signals are not a critical part of how Circle works anyway (they are only used
for updating the wizlist and some other trivial things), all signal handling is turned off by default
when compiling under any non-UNIX platform (i.e. the Windows 95 and Amiga ports do not use
signals at all.) Simply make sure thatCIRCLE_UNIX is not defined in yourconf.h file and all
signal code will be ignored automatically.

4 Final Note

IMPORTANT: Remember to keep any changes you make surrounded by#ifdef statements (i.e.
“#ifdef CIRCLE_WINDOWS ... #endif ”). If you make absolutely sure to mark all of your
changes with#ifdef statements, then your patches (once you get them to work) will be suitable
for incorporation into the CircleMUD distribution, meaning that CircleMUD will officially support
your platform.

4


