Gergely POLONKAI (W00d5t0ck)
449e26259b
!!!WARNING!!! The build system is not updated to reflect this! The !!!WARNING!!! whole point is to subtree the swe-glib/ directory, !!!WARNING!!! making SWE-Glib a separate project as it intended to be.
3070 lines
95 KiB
C
3070 lines
95 KiB
C
|
|
/* SWISSEPH
|
|
$Header: /home/dieter/sweph/RCS/swephlib.c,v 1.75 2009/11/27 11:00:57 dieter Exp $
|
|
|
|
SWISSEPH modules that may be useful for other applications
|
|
e.g. chopt.c, venus.c, swetest.c
|
|
|
|
Authors: Dieter Koch and Alois Treindl, Astrodienst Zurich
|
|
|
|
coordinate transformations
|
|
obliquity of ecliptic
|
|
nutation
|
|
precession
|
|
delta t
|
|
sidereal time
|
|
setting or getting of tidal acceleration of moon
|
|
chebyshew interpolation
|
|
ephemeris file name generation
|
|
cyclic redundancy checksum CRC
|
|
modulo and normalization functions
|
|
|
|
**************************************************************/
|
|
|
|
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
|
|
|
|
License conditions
|
|
------------------
|
|
|
|
This file is part of Swiss Ephemeris.
|
|
|
|
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
|
|
or distributor accepts any responsibility for the consequences of using it,
|
|
or for whether it serves any particular purpose or works at all, unless he
|
|
or she says so in writing.
|
|
|
|
Swiss Ephemeris is made available by its authors under a dual licensing
|
|
system. The software developer, who uses any part of Swiss Ephemeris
|
|
in his or her software, must choose between one of the two license models,
|
|
which are
|
|
a) GNU public license version 2 or later
|
|
b) Swiss Ephemeris Professional License
|
|
|
|
The choice must be made before the software developer distributes software
|
|
containing parts of Swiss Ephemeris to others, and before any public
|
|
service using the developed software is activated.
|
|
|
|
If the developer choses the GNU GPL software license, he or she must fulfill
|
|
the conditions of that license, which includes the obligation to place his
|
|
or her whole software project under the GNU GPL or a compatible license.
|
|
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
|
|
If the developer choses the Swiss Ephemeris Professional license,
|
|
he must follow the instructions as found in http://www.astro.com/swisseph/
|
|
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
|
|
and sign the corresponding license contract.
|
|
|
|
The License grants you the right to use, copy, modify and redistribute
|
|
Swiss Ephemeris, but only under certain conditions described in the License.
|
|
Among other things, the License requires that the copyright notices and
|
|
this notice be preserved on all copies.
|
|
|
|
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
|
|
|
|
The authors of Swiss Ephemeris have no control or influence over any of
|
|
the derived works, i.e. over software or services created by other
|
|
programmers which use Swiss Ephemeris functions.
|
|
|
|
The names of the authors or of the copyright holder (Astrodienst) must not
|
|
be used for promoting any software, product or service which uses or contains
|
|
the Swiss Ephemeris. This copyright notice is the ONLY place where the
|
|
names of the authors can legally appear, except in cases where they have
|
|
given special permission in writing.
|
|
|
|
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
|
|
for promoting such software, products or services.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include "swephexp.h"
|
|
#include "sweph.h"
|
|
#include "swephlib.h"
|
|
#if MSDOS
|
|
#include <process.h>
|
|
#endif
|
|
|
|
#ifdef TRACE
|
|
void swi_open_trace(char *serr);
|
|
FILE *swi_fp_trace_c = NULL;
|
|
FILE *swi_fp_trace_out = NULL;
|
|
int32 swi_trace_count = 0;
|
|
#endif
|
|
|
|
static double tid_acc = SE_TIDAL_DEFAULT;
|
|
static AS_BOOL init_dt_done = FALSE;
|
|
static void init_crc32(void);
|
|
static int init_dt(void);
|
|
static double adjust_for_tidacc(double ans, double Y);
|
|
static double deltat_espenak_meeus_1620(double tjd);
|
|
static double deltat_longterm_morrison_stephenson(double tjd);
|
|
static double deltat_stephenson_morrison_1600(double tjd);
|
|
static double deltat_aa(double tjd);
|
|
static int precess0(double *R, double J, int direction);
|
|
|
|
/* Reduce x modulo 360 degrees
|
|
*/
|
|
double FAR PASCAL_CONV
|
|
swe_degnorm(double x)
|
|
{
|
|
double y;
|
|
y = fmod(x, 360.0);
|
|
if (fabs(y) < 1e-13)
|
|
y = 0; /* Alois fix 11-dec-1999 */
|
|
if (y < 0.0)
|
|
y += 360.0;
|
|
return (y);
|
|
}
|
|
|
|
/* Reduce x modulo TWOPI degrees
|
|
*/
|
|
double FAR PASCAL_CONV
|
|
swe_radnorm(double x)
|
|
{
|
|
double y;
|
|
y = fmod(x, TWOPI);
|
|
if (fabs(y) < 1e-13)
|
|
y = 0; /* Alois fix 11-dec-1999 */
|
|
if (y < 0.0)
|
|
y += TWOPI;
|
|
return (y);
|
|
}
|
|
|
|
double FAR PASCAL_CONV
|
|
swe_deg_midp(double x1, double x0)
|
|
{
|
|
double d, y;
|
|
d = swe_difdeg2n(x1, x0); /* arc from x0 to x1 */
|
|
y = swe_degnorm(x0 + d / 2);
|
|
return (y);
|
|
}
|
|
|
|
double FAR PASCAL_CONV
|
|
swe_rad_midp(double x1, double x0)
|
|
{
|
|
return DEGTORAD * swe_deg_midp(x1 * RADTODEG, x0 * RADTODEG);
|
|
}
|
|
|
|
/* Reduce x modulo 2*PI
|
|
*/
|
|
double
|
|
swi_mod2PI(double x)
|
|
{
|
|
double y;
|
|
y = fmod(x, TWOPI);
|
|
if (y < 0.0)
|
|
y += TWOPI;
|
|
return (y);
|
|
}
|
|
|
|
|
|
double
|
|
swi_angnorm(double x)
|
|
{
|
|
if (x < 0.0)
|
|
return x + TWOPI;
|
|
else if (x >= TWOPI)
|
|
return x - TWOPI;
|
|
else
|
|
return x;
|
|
}
|
|
|
|
void
|
|
swi_cross_prod(double *a, double *b, double *x)
|
|
{
|
|
x[0] = a[1] * b[2] - a[2] * b[1];
|
|
x[1] = a[2] * b[0] - a[0] * b[2];
|
|
x[2] = a[0] * b[1] - a[1] * b[0];
|
|
}
|
|
|
|
/* Evaluates a given chebyshev series coef[0..ncf-1]
|
|
* with ncf terms at x in [-1,1]. Communications of the ACM, algorithm 446,
|
|
* April 1973 (vol. 16 no.4) by Dr. Roger Broucke.
|
|
*/
|
|
double
|
|
swi_echeb(double x, double *coef, int ncf)
|
|
{
|
|
int j;
|
|
double x2, br, brp2, brpp;
|
|
x2 = x * 2.;
|
|
br = 0.;
|
|
brp2 = 0.; /* dummy assign to silence gcc warning */
|
|
brpp = 0.;
|
|
for (j = ncf - 1; j >= 0; j--) {
|
|
brp2 = brpp;
|
|
brpp = br;
|
|
br = x2 * brpp - brp2 + coef[j];
|
|
}
|
|
return (br - brp2) * .5;
|
|
}
|
|
|
|
/*
|
|
* evaluates derivative of chebyshev series, see echeb
|
|
*/
|
|
double
|
|
swi_edcheb(double x, double *coef, int ncf)
|
|
{
|
|
double bjpl, xjpl;
|
|
int j;
|
|
double x2, bf, bj, dj, xj, bjp2, xjp2;
|
|
x2 = x * 2.;
|
|
bf = 0.; /* dummy assign to silence gcc warning */
|
|
bj = 0.; /* dummy assign to silence gcc warning */
|
|
xjp2 = 0.;
|
|
xjpl = 0.;
|
|
bjp2 = 0.;
|
|
bjpl = 0.;
|
|
for (j = ncf - 1; j >= 1; j--) {
|
|
dj = (double)(j + j);
|
|
xj = coef[j] * dj + xjp2;
|
|
bj = x2 * bjpl - bjp2 + xj;
|
|
bf = bjp2;
|
|
bjp2 = bjpl;
|
|
bjpl = bj;
|
|
xjp2 = xjpl;
|
|
xjpl = xj;
|
|
}
|
|
return (bj - bf) * .5;
|
|
}
|
|
|
|
/*
|
|
* conversion between ecliptical and equatorial polar coordinates.
|
|
* for users of SWISSEPH, not used by our routines.
|
|
* for ecl. to equ. eps must be negative.
|
|
* for equ. to ecl. eps must be positive.
|
|
* xpo, xpn are arrays of 3 doubles containing position.
|
|
* attention: input must be in degrees!
|
|
*/
|
|
void FAR PASCAL_CONV
|
|
swe_cotrans(double *xpo, double *xpn, double eps)
|
|
{
|
|
int i;
|
|
double x[6], e = eps * DEGTORAD;
|
|
for (i = 0; i <= 1; i++)
|
|
x[i] = xpo[i];
|
|
x[0] *= DEGTORAD;
|
|
x[1] *= DEGTORAD;
|
|
x[2] = 1;
|
|
for (i = 3; i <= 5; i++)
|
|
x[i] = 0;
|
|
swi_polcart(x, x);
|
|
swi_coortrf(x, x, e);
|
|
swi_cartpol(x, x);
|
|
xpn[0] = x[0] * RADTODEG;
|
|
xpn[1] = x[1] * RADTODEG;
|
|
xpn[2] = xpo[2];
|
|
}
|
|
|
|
/*
|
|
* conversion between ecliptical and equatorial polar coordinates
|
|
* with speed.
|
|
* for users of SWISSEPH, not used by our routines.
|
|
* for ecl. to equ. eps must be negative.
|
|
* for equ. to ecl. eps must be positive.
|
|
* xpo, xpn are arrays of 6 doubles containing position and speed.
|
|
* attention: input must be in degrees!
|
|
*/
|
|
void FAR PASCAL_CONV
|
|
swe_cotrans_sp(double *xpo, double *xpn, double eps)
|
|
{
|
|
int i;
|
|
double x[6], e = eps * DEGTORAD;
|
|
for (i = 0; i <= 5; i++)
|
|
x[i] = xpo[i];
|
|
x[0] *= DEGTORAD;
|
|
x[1] *= DEGTORAD;
|
|
x[2] = 1; /* avoids problems with polcart(), if x[2] = 0 */
|
|
x[3] *= DEGTORAD;
|
|
x[4] *= DEGTORAD;
|
|
swi_polcart_sp(x, x);
|
|
swi_coortrf(x, x, e);
|
|
swi_coortrf(x + 3, x + 3, e);
|
|
swi_cartpol_sp(x, xpn);
|
|
xpn[0] *= RADTODEG;
|
|
xpn[1] *= RADTODEG;
|
|
xpn[2] = xpo[2];
|
|
xpn[3] *= RADTODEG;
|
|
xpn[4] *= RADTODEG;
|
|
xpn[5] = xpo[5];
|
|
}
|
|
|
|
/*
|
|
* conversion between ecliptical and equatorial cartesian coordinates
|
|
* for ecl. to equ. eps must be negative
|
|
* for equ. to ecl. eps must be positive
|
|
*/
|
|
void
|
|
swi_coortrf(double *xpo, double *xpn, double eps)
|
|
{
|
|
double sineps, coseps;
|
|
double x[3];
|
|
sineps = sin(eps);
|
|
coseps = cos(eps);
|
|
x[0] = xpo[0];
|
|
x[1] = xpo[1] * coseps + xpo[2] * sineps;
|
|
x[2] = -xpo[1] * sineps + xpo[2] * coseps;
|
|
xpn[0] = x[0];
|
|
xpn[1] = x[1];
|
|
xpn[2] = x[2];
|
|
}
|
|
|
|
/*
|
|
* conversion between ecliptical and equatorial cartesian coordinates
|
|
* sineps sin(eps)
|
|
* coseps cos(eps)
|
|
* for ecl. to equ. sineps must be -sin(eps)
|
|
*/
|
|
void
|
|
swi_coortrf2(double *xpo, double *xpn, double sineps, double coseps)
|
|
{
|
|
double x[3];
|
|
x[0] = xpo[0];
|
|
x[1] = xpo[1] * coseps + xpo[2] * sineps;
|
|
x[2] = -xpo[1] * sineps + xpo[2] * coseps;
|
|
xpn[0] = x[0];
|
|
xpn[1] = x[1];
|
|
xpn[2] = x[2];
|
|
}
|
|
|
|
/* conversion of cartesian (x[3]) to polar coordinates (l[3]).
|
|
* x = l is allowed.
|
|
* if |x| = 0, then lon, lat and rad := 0.
|
|
*/
|
|
void
|
|
swi_cartpol(double *x, double *l)
|
|
{
|
|
double rxy;
|
|
double ll[3];
|
|
if (x[0] == 0 && x[1] == 0 && x[2] == 0) {
|
|
l[0] = l[1] = l[2] = 0;
|
|
return;
|
|
}
|
|
rxy = x[0] * x[0] + x[1] * x[1];
|
|
ll[2] = sqrt(rxy + x[2] * x[2]);
|
|
rxy = sqrt(rxy);
|
|
ll[0] = atan2(x[1], x[0]);
|
|
if (ll[0] < 0.0)
|
|
ll[0] += TWOPI;
|
|
ll[1] = atan(x[2] / rxy);
|
|
l[0] = ll[0];
|
|
l[1] = ll[1];
|
|
l[2] = ll[2];
|
|
}
|
|
|
|
/* conversion from polar (l[3]) to cartesian coordinates (x[3]).
|
|
* x = l is allowed.
|
|
*/
|
|
void
|
|
swi_polcart(double *l, double *x)
|
|
{
|
|
double xx[3];
|
|
double cosl1;
|
|
cosl1 = cos(l[1]);
|
|
xx[0] = l[2] * cosl1 * cos(l[0]);
|
|
xx[1] = l[2] * cosl1 * sin(l[0]);
|
|
xx[2] = l[2] * sin(l[1]);
|
|
x[0] = xx[0];
|
|
x[1] = xx[1];
|
|
x[2] = xx[2];
|
|
}
|
|
|
|
/* conversion of position and speed.
|
|
* from cartesian (x[6]) to polar coordinates (l[6]).
|
|
* x = l is allowed.
|
|
* if position is 0, function returns direction of
|
|
* motion.
|
|
*/
|
|
void
|
|
swi_cartpol_sp(double *x, double *l)
|
|
{
|
|
double xx[6], ll[6];
|
|
double rxy, coslon, sinlon, coslat, sinlat;
|
|
/* zero position */
|
|
if (x[0] == 0 && x[1] == 0 && x[2] == 0) {
|
|
l[0] = l[1] = l[3] = l[4] = 0;
|
|
l[5] = sqrt(square_sum((x + 3)));
|
|
swi_cartpol(x + 3, l);
|
|
l[2] = 0;
|
|
return;
|
|
}
|
|
/* zero speed */
|
|
if (x[3] == 0 && x[4] == 0 && x[5] == 0) {
|
|
l[3] = l[4] = l[5] = 0;
|
|
swi_cartpol(x, l);
|
|
return;
|
|
}
|
|
/* position */
|
|
rxy = x[0] * x[0] + x[1] * x[1];
|
|
ll[2] = sqrt(rxy + x[2] * x[2]);
|
|
rxy = sqrt(rxy);
|
|
ll[0] = atan2(x[1], x[0]);
|
|
if (ll[0] < 0.0)
|
|
ll[0] += TWOPI;
|
|
ll[1] = atan(x[2] / rxy);
|
|
/* speed:
|
|
* 1. rotate coordinate system by longitude of position about z-axis,
|
|
* so that new x-axis = position radius projected onto x-y-plane.
|
|
* in the new coordinate system
|
|
* vy'/r = dlong/dt, where r = sqrt(x^2 +y^2).
|
|
* 2. rotate coordinate system by latitude about new y-axis.
|
|
* vz"/r = dlat/dt, where r = position radius.
|
|
* vx" = dr/dt
|
|
*/
|
|
coslon = x[0] / rxy; /* cos(l[0]); */
|
|
sinlon = x[1] / rxy; /* sin(l[0]); */
|
|
coslat = rxy / ll[2]; /* cos(l[1]); */
|
|
sinlat = x[2] / ll[2]; /* sin(ll[1]); */
|
|
xx[3] = x[3] * coslon + x[4] * sinlon;
|
|
xx[4] = -x[3] * sinlon + x[4] * coslon;
|
|
l[3] = xx[4] / rxy; /* speed in longitude */
|
|
xx[4] = -sinlat * xx[3] + coslat * x[5];
|
|
xx[5] = coslat * xx[3] + sinlat * x[5];
|
|
l[4] = xx[4] / ll[2]; /* speed in latitude */
|
|
l[5] = xx[5]; /* speed in radius */
|
|
l[0] = ll[0]; /* return position */
|
|
l[1] = ll[1];
|
|
l[2] = ll[2];
|
|
}
|
|
|
|
/* conversion of position and speed
|
|
* from polar (l[6]) to cartesian coordinates (x[6])
|
|
* x = l is allowed
|
|
* explanation s. swi_cartpol_sp()
|
|
*/
|
|
void
|
|
swi_polcart_sp(double *l, double *x)
|
|
{
|
|
double sinlon, coslon, sinlat, coslat;
|
|
double xx[6], rxy, rxyz;
|
|
/* zero speed */
|
|
if (l[3] == 0 && l[4] == 0 && l[5] == 0) {
|
|
x[3] = x[4] = x[5] = 0;
|
|
swi_polcart(l, x);
|
|
return;
|
|
}
|
|
/* position */
|
|
coslon = cos(l[0]);
|
|
sinlon = sin(l[0]);
|
|
coslat = cos(l[1]);
|
|
sinlat = sin(l[1]);
|
|
xx[0] = l[2] * coslat * coslon;
|
|
xx[1] = l[2] * coslat * sinlon;
|
|
xx[2] = l[2] * sinlat;
|
|
/* speed; explanation s. swi_cartpol_sp(), same method the other way round */
|
|
rxyz = l[2];
|
|
rxy = sqrt(xx[0] * xx[0] + xx[1] * xx[1]);
|
|
xx[5] = l[5];
|
|
xx[4] = l[4] * rxyz;
|
|
x[5] = sinlat * xx[5] + coslat * xx[4]; /* speed z */
|
|
xx[3] = coslat * xx[5] - sinlat * xx[4];
|
|
xx[4] = l[3] * rxy;
|
|
x[3] = coslon * xx[3] - sinlon * xx[4]; /* speed x */
|
|
x[4] = sinlon * xx[3] + coslon * xx[4]; /* speed y */
|
|
x[0] = xx[0]; /* return position */
|
|
x[1] = xx[1];
|
|
x[2] = xx[2];
|
|
}
|
|
|
|
double
|
|
swi_dot_prod_unit(double *x, double *y)
|
|
{
|
|
double dop = x[0] * y[0] + x[1] * y[1] + x[2] * y[2];
|
|
double e1 = sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
|
|
double e2 = sqrt(y[0] * y[0] + y[1] * y[1] + y[2] * y[2]);
|
|
dop /= e1;
|
|
dop /= e2;
|
|
if (dop > 1)
|
|
dop = 1;
|
|
if (dop < -1)
|
|
dop = -1;
|
|
return dop;
|
|
}
|
|
|
|
/* functions for precession and ecliptic obliquity according to Vondrák et alii, 2011 */
|
|
#define AS2R (DEGTORAD / 3600.0)
|
|
#define D2PI TWOPI
|
|
#define EPS0 (84381.406 * AS2R)
|
|
#define NPOL_PEPS 4
|
|
#define NPER_PEPS 10
|
|
#define NPOL_PECL 4
|
|
#define NPER_PECL 8
|
|
#define NPOL_PEQU 4
|
|
#define NPER_PEQU 14
|
|
|
|
/* for pre_peps(): */
|
|
|
|
/* polynomials */
|
|
static double pepol[NPOL_PEPS][2] = {
|
|
{+8134.017132, +84028.206305},
|
|
{+5043.0520035, +0.3624445},
|
|
{-0.00710733, -0.00004039},
|
|
{+0.000000271, -0.000000110}
|
|
};
|
|
|
|
/* periodics */
|
|
static double peper[5][NPER_PEPS] = {
|
|
{+409.90, +396.15, +537.22, +402.90, +417.15, +288.92, +4043.00, +306.00,
|
|
+277.00, +203.00},
|
|
{-6908.287473, -3198.706291, +1453.674527, -857.748557, +1173.231614,
|
|
-156.981465, +371.836550, -216.619040, +193.691479, +11.891524},
|
|
{+753.872780, -247.805823, +379.471484, -53.880558, -90.109153,
|
|
-353.600190, -63.115353, -28.248187, +17.703387, +38.911307},
|
|
{-2845.175469, +449.844989, -1255.915323, +886.736783, +418.887514,
|
|
+997.912441, -240.979710, +76.541307, -36.788069, -170.964086},
|
|
{-1704.720302, -862.308358, +447.832178, -889.571909, +190.402846,
|
|
-56.564991, -296.222622, -75.859952, +67.473503, +3.014055}
|
|
};
|
|
|
|
/* for pre_pecl(): */
|
|
|
|
/* polynomials */
|
|
static double pqpol[NPOL_PECL][2] = {
|
|
{+5851.607687, -1600.886300},
|
|
{-0.1189000, +1.1689818},
|
|
{-0.00028913, -0.00000020},
|
|
{+0.000000101, -0.000000437}
|
|
};
|
|
|
|
/* periodics */
|
|
static double pqper[5][NPER_PECL] = {
|
|
{708.15, 2309, 1620, 492.2, 1183, 622, 882, 547},
|
|
{-5486.751211, -17.127623, -617.517403, 413.44294, 78.614193, -180.732815,
|
|
-87.676083, 46.140315},
|
|
{-684.66156, 2446.28388, 399.671049, -356.652376, -186.387003, -316.80007, 198.296701, 101.135679}, /* typo in publication fixed */
|
|
{667.66673, -2354.886252, -428.152441, 376.202861, 184.778874, 335.321713,
|
|
-185.138669, -120.97283},
|
|
{-5523.863691, -549.74745, -310.998056, 421.535876, -36.776172,
|
|
-145.278396, -34.74445, 22.885731}
|
|
};
|
|
|
|
/* for pre_pequ(): */
|
|
|
|
/* polynomials */
|
|
static double xypol[NPOL_PEQU][2] = {
|
|
{+5453.282155, -73750.930350},
|
|
{+0.4252841, -0.7675452},
|
|
{-0.00037173, -0.00018725},
|
|
{-0.000000152, +0.000000231}
|
|
};
|
|
|
|
/* periodics */
|
|
static double xyper[5][NPER_PEQU] = {
|
|
{256.75, 708.15, 274.2, 241.45, 2309, 492.2, 396.1, 288.9, 231.1, 1610,
|
|
620, 157.87, 220.3, 1200},
|
|
{-819.940624, -8444.676815, 2600.009459, 2755.17563, -167.659835,
|
|
871.855056, 44.769698, -512.313065, -819.415595, -538.071099,
|
|
-189.793622, -402.922932, 179.516345, -9.814756},
|
|
{75004.344875, 624.033993, 1251.136893, -1102.212834, -2660.66498,
|
|
699.291817, 153.16722, -950.865637, 499.754645, -145.18821, 558.116553,
|
|
-23.923029, -165.405086, 9.344131},
|
|
{81491.287984, 787.163481, 1251.296102, -1257.950837, -2966.79973,
|
|
639.744522, 131.600209, -445.040117, 584.522874, -89.756563, 524.42963,
|
|
-13.549067, -210.157124, -44.919798},
|
|
{1558.515853, 7774.939698, -2219.534038, -2523.969396, 247.850422,
|
|
-846.485643, -1393.124055, 368.526116, 749.045012, 444.704518,
|
|
235.934465, 374.049623, -171.33018, -22.899655}
|
|
};
|
|
|
|
void
|
|
swi_ldp_peps(double tjd, double *dpre, double *deps)
|
|
{
|
|
int i;
|
|
int npol = NPOL_PEPS;
|
|
int nper = NPER_PEPS;
|
|
double t, p, q, w, a, s, c;
|
|
t = (tjd - J2000) / 36525.0;
|
|
p = 0;
|
|
q = 0;
|
|
/* periodic terms */
|
|
for (i = 0; i < nper; i++) {
|
|
w = D2PI * t;
|
|
a = w / peper[0][i];
|
|
s = sin(a);
|
|
c = cos(a);
|
|
p += c * peper[1][i] + s * peper[3][i];
|
|
q += c * peper[2][i] + s * peper[4][i];
|
|
}
|
|
/* polynomial terms */
|
|
w = 1;
|
|
for (i = 0; i < npol; i++) {
|
|
p += pepol[i][0] * w;
|
|
q += pepol[i][1] * w;
|
|
w *= t;
|
|
}
|
|
/* both to radians */
|
|
p *= AS2R;
|
|
q *= AS2R;
|
|
/* return */
|
|
if (dpre != NULL)
|
|
*dpre = p;
|
|
if (deps != NULL)
|
|
*deps = q;
|
|
}
|
|
|
|
/*
|
|
* Long term high precision precession,
|
|
* according to Vondrak/Capitaine/Wallace, "New precession expressions, valid
|
|
* for long time intervals", in A&A 534, A22(2011).
|
|
*/
|
|
|
|
/* precession of the ecliptic */
|
|
static void
|
|
pre_pecl(double tjd, double *vec)
|
|
{
|
|
int i;
|
|
int npol = NPOL_PECL;
|
|
int nper = NPER_PECL;
|
|
double t, p, q, w, a, s, c, z;
|
|
t = (tjd - J2000) / 36525.0;
|
|
p = 0;
|
|
q = 0;
|
|
/* periodic terms */
|
|
for (i = 0; i < nper; i++) {
|
|
w = D2PI * t;
|
|
a = w / pqper[0][i];
|
|
s = sin(a);
|
|
c = cos(a);
|
|
p += c * pqper[1][i] + s * pqper[3][i];
|
|
q += c * pqper[2][i] + s * pqper[4][i];
|
|
}
|
|
/* polynomial terms */
|
|
w = 1;
|
|
for (i = 0; i < npol; i++) {
|
|
p += pqpol[i][0] * w;
|
|
q += pqpol[i][1] * w;
|
|
w *= t;
|
|
}
|
|
/* both to radians */
|
|
p *= AS2R;
|
|
q *= AS2R;
|
|
/* ecliptic pole vector */
|
|
z = 1 - p * p - q * q;
|
|
if (z < 0)
|
|
z = 0;
|
|
else
|
|
z = sqrt(z);
|
|
s = sin(EPS0);
|
|
c = cos(EPS0);
|
|
vec[0] = p;
|
|
vec[1] = -q * c - z * s;
|
|
vec[2] = -q * s + z * c;
|
|
}
|
|
|
|
/* precession of the equator */
|
|
static void
|
|
pre_pequ(double tjd, double *veq)
|
|
{
|
|
int i;
|
|
int npol = NPOL_PEQU;
|
|
int nper = NPER_PEQU;
|
|
double t, x, y, w, a, s, c;
|
|
t = (tjd - J2000) / 36525.0;
|
|
x = 0;
|
|
y = 0;
|
|
for (i = 0; i < nper; i++) {
|
|
w = D2PI * t;
|
|
a = w / xyper[0][i];
|
|
s = sin(a);
|
|
c = cos(a);
|
|
x += c * xyper[1][i] + s * xyper[3][i];
|
|
y += c * xyper[2][i] + s * xyper[4][i];
|
|
}
|
|
/* polynomial terms */
|
|
w = 1;
|
|
for (i = 0; i < npol; i++) {
|
|
x += xypol[i][0] * w;
|
|
y += xypol[i][1] * w;
|
|
w *= t;
|
|
}
|
|
x *= AS2R;
|
|
y *= AS2R;
|
|
/* equator pole vector */
|
|
veq[0] = x;
|
|
veq[1] = y;
|
|
w = x * x + y * y;
|
|
if (w < 1)
|
|
veq[2] = sqrt(1 - w);
|
|
else
|
|
veq[2] = 0;
|
|
}
|
|
|
|
#if 0
|
|
static void
|
|
swi_cross_prod(double *a, double *b, double *x)
|
|
{
|
|
x[0] = a[1] * b[2] - a[2] * b[1];
|
|
x[1] = a[2] * b[0] - a[0] * b[2];
|
|
x[2] = a[0] * b[1] - a[1] * b[0];
|
|
}
|
|
#endif
|
|
|
|
/* precession matrix */
|
|
static void
|
|
pre_pmat(double tjd, double *rp)
|
|
{
|
|
double peqr[3], pecl[3], v[3], w, eqx[3];
|
|
/*equator pole */
|
|
pre_pequ(tjd, peqr);
|
|
/* ecliptic pole */
|
|
pre_pecl(tjd, pecl);
|
|
/* equinox */
|
|
swi_cross_prod(peqr, pecl, v);
|
|
w = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
eqx[0] = v[0] / w;
|
|
eqx[1] = v[1] / w;
|
|
eqx[2] = v[2] / w;
|
|
swi_cross_prod(peqr, eqx, v);
|
|
rp[0] = eqx[0];
|
|
rp[1] = eqx[1];
|
|
rp[2] = eqx[2];
|
|
rp[3] = v[0];
|
|
rp[4] = v[1];
|
|
rp[5] = v[2];
|
|
rp[6] = peqr[0];
|
|
rp[7] = peqr[1];
|
|
rp[8] = peqr[2];
|
|
}
|
|
|
|
/* Obliquity of the ecliptic at Julian date J
|
|
*
|
|
* IAU Coefficients are from:
|
|
* J. H. Lieske, T. Lederle, W. Fricke, and B. Morando,
|
|
* "Expressions for the Precession Quantities Based upon the IAU
|
|
* (1976) System of Astronomical Constants," Astronomy and Astrophysics
|
|
* 58, 1-16 (1977).
|
|
*
|
|
* Before or after 200 years from J2000, the formula used is from:
|
|
* J. Laskar, "Secular terms of classical planetary theories
|
|
* using the results of general theory," Astronomy and Astrophysics
|
|
* 157, 59070 (1986).
|
|
*
|
|
* Bretagnon, P. et al.: 2003, "Expressions for Precession Consistent with
|
|
* the IAU 2000A Model". A&A 400,785
|
|
*B03 84381.4088 -46.836051*t -1667*10-7*t2 +199911*10-8*t3 -523*10-9*t4 -248*10-10*t5 -3*10-11*t6
|
|
*C03 84381.406 -46.836769*t -1831*10-7*t2 +20034*10-7*t3 -576*10-9*t4 -434*10-10*t5
|
|
*
|
|
* See precess and page B18 of the Astronomical Almanac.
|
|
*/
|
|
double
|
|
swi_epsiln(double J)
|
|
{
|
|
double T, eps;
|
|
T = (J - 2451545.0) / 36525.0;
|
|
if (PREC_IAU_1976 && fabs(T) <= PREC_IAU_1976_CTIES) {
|
|
eps =
|
|
(((1.813e-3 * T - 5.9e-4) * T - 46.8150) * T +
|
|
84381.448) * DEGTORAD / 3600;
|
|
}
|
|
else if (PREC_IAU_2003 && fabs(T) <= PREC_IAU_2003_CTIES) {
|
|
eps =
|
|
(((((-4.34e-8 * T - 5.76e-7) * T + 2.0034e-3) * T -
|
|
1.831e-4) * T - 46.836769) * T +
|
|
84381.406) * DEGTORAD / 3600.0;
|
|
}
|
|
else if (PREC_BRETAGNON_2003) {
|
|
eps = ((((((-3e-11 * T - 2.48e-8) * T - 5.23e-7) * T + 1.99911e-3) * T - 1.667e-4) * T - 46.836051) * T + 84381.40880) * DEGTORAD / 3600.0; /* */
|
|
}
|
|
else if (PREC_SIMON_1994) {
|
|
eps = (((((2.5e-8 * T - 5.1e-7) * T + 1.9989e-3) * T - 1.52e-4) * T - 46.80927) * T + 84381.412) * DEGTORAD / 3600.0; /* */
|
|
}
|
|
else if (PREC_WILLIAMS_1994) {
|
|
eps = ((((-1.0e-6 * T + 2.0e-3) * T - 1.74e-4) * T - 46.833960) * T + 84381.409) * DEGTORAD / 3600.0; /* */
|
|
}
|
|
else if (PREC_LASKAR_1986) {
|
|
T /= 10.0;
|
|
eps =
|
|
(((((((((2.45e-10 * T + 5.79e-9) * T + 2.787e-7) * T +
|
|
7.12e-7) * T - 3.905e-5) * T - 2.4967e-3) * T -
|
|
5.138e-3) * T + 1.99925) * T - 0.0155) * T - 468.093) * T +
|
|
84381.448;
|
|
eps *= DEGTORAD / 3600;
|
|
}
|
|
else { /* PREC_VONDRAK_2011 */
|
|
swi_ldp_peps(J, NULL, &eps);
|
|
}
|
|
return (eps);
|
|
}
|
|
|
|
/* Precession of the equinox and ecliptic
|
|
* from epoch Julian date J to or from J2000.0
|
|
*
|
|
* Original program by Steve Moshier.
|
|
* Changes in program structure and implementation of IAU 2003 (P03) and
|
|
* Vondrak 2011 by Dieter Koch.
|
|
*
|
|
* #define PREC_VONDRAK_2011 1
|
|
* J. Vondrák, N. Capitaine, and P. Wallace, "New precession expressions,
|
|
* valid for long time intervals", A&A 534, A22 (2011)
|
|
*
|
|
* #define PREC_IAU_2003 0
|
|
* N. Capitaine, P.T. Wallace, and J. Chapront, "Expressions for IAU 2000
|
|
* precession quantities", 2003, A&A 412, 567-568 (2003).
|
|
* This is a "short" term model, that can be combined with other models
|
|
*
|
|
* #define PREC_WILLIAMS_1994 0
|
|
* James G. Williams, "Contributions to the Earth's obliquity rate,
|
|
* precession, and nutation," Astron. J. 108, 711-724 (1994).
|
|
*
|
|
* #define PREC_SIMON_1994 0
|
|
* J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze', G. Francou,
|
|
* and J. Laskar, "Numerical Expressions for precession formulae and
|
|
* mean elements for the Moon and the planets," Astronomy and Astrophysics
|
|
* 282, 663-683 (1994).
|
|
*
|
|
* #define PREC_IAU_1976 0
|
|
* IAU Coefficients are from:
|
|
* J. H. Lieske, T. Lederle, W. Fricke, and B. Morando,
|
|
* "Expressions for the Precession Quantities Based upon the IAU
|
|
* (1976) System of Astronomical Constants," Astronomy and
|
|
* Astrophysics 58, 1-16 (1977).
|
|
* This is a "short" term model, that can be combined with other models
|
|
*
|
|
* #define PREC_LASKAR_1986 0
|
|
* Newer formulas that cover a much longer time span are from:
|
|
* J. Laskar, "Secular terms of classical planetary theories
|
|
* using the results of general theory," Astronomy and Astrophysics
|
|
* 157, 59070 (1986).
|
|
*
|
|
* See also:
|
|
* P. Bretagnon and G. Francou, "Planetary theories in rectangular
|
|
* and spherical variables. VSOP87 solutions," Astronomy and
|
|
* Astrophysics 202, 309-315 (1988).
|
|
*
|
|
* Bretagnon and Francou's expansions for the node and inclination
|
|
* of the ecliptic were derived from Laskar's data but were truncated
|
|
* after the term in T**6. I have recomputed these expansions from
|
|
* Laskar's data, retaining powers up to T**10 in the result.
|
|
*
|
|
*/
|
|
|
|
/* In WILLIAMS and SIMON, Laskar's terms of order higher than t^4
|
|
have been retained, because Simon et al mention that the solution
|
|
is the same except for the lower order terms. */
|
|
|
|
#if (PREC_WILLIAMS_1994 || PREC_VONDRAK_2011) /* Vondrak only added to shut up the compiler */
|
|
static double pAcof[] = {
|
|
-8.66e-10, -4.759e-8, 2.424e-7, 1.3095e-5, 1.7451e-4, -1.8055e-3,
|
|
-0.235316, 0.076, 110.5407, 50287.70000
|
|
};
|
|
|
|
static double nodecof[] = {
|
|
6.6402e-16, -2.69151e-15, -1.547021e-12, 7.521313e-12, 1.9e-10,
|
|
-3.54e-9, -1.8103e-7, 1.26e-7, 7.436169e-5,
|
|
-0.04207794833, 3.052115282424
|
|
};
|
|
|
|
static double inclcof[] = {
|
|
1.2147e-16, 7.3759e-17, -8.26287e-14, 2.503410e-13, 2.4650839e-11,
|
|
-5.4000441e-11, 1.32115526e-9, -6.012e-7, -1.62442e-5,
|
|
0.00227850649, 0.0
|
|
};
|
|
#endif
|
|
|
|
#if PREC_SIMON_1994
|
|
|
|
/* Precession coefficients from Simon et al: */
|
|
static double pAcof[] = {
|
|
-8.66e-10, -4.759e-8, 2.424e-7, 1.3095e-5, 1.7451e-4, -1.8055e-3,
|
|
-0.235316, 0.07732, 111.2022, 50288.200
|
|
};
|
|
|
|
static double nodecof[] = {
|
|
6.6402e-16, -2.69151e-15, -1.547021e-12, 7.521313e-12, 1.9e-10,
|
|
-3.54e-9, -1.8103e-7, 2.579e-8, 7.4379679e-5,
|
|
-0.0420782900, 3.0521126906
|
|
};
|
|
|
|
static double inclcof[] = {
|
|
1.2147e-16, 7.3759e-17, -8.26287e-14, 2.503410e-13, 2.4650839e-11,
|
|
-5.4000441e-11, 1.32115526e-9, -5.99908e-7, -1.624383e-5,
|
|
0.002278492868, 0.0
|
|
};
|
|
#endif
|
|
|
|
#if PREC_LASKAR_1986
|
|
|
|
/* Precession coefficients taken from Laskar's paper: */
|
|
static double pAcof[] = {
|
|
-8.66e-10, -4.759e-8, 2.424e-7, 1.3095e-5, 1.7451e-4, -1.8055e-3,
|
|
-0.235316, 0.07732, 111.1971, 50290.966
|
|
};
|
|
|
|
/* Node and inclination of the earth's orbit computed from
|
|
* Laskar's data as done in Bretagnon and Francou's paper.
|
|
* Units are radians.
|
|
*/
|
|
static double nodecof[] = {
|
|
6.6402e-16, -2.69151e-15, -1.547021e-12, 7.521313e-12, 6.3190131e-10,
|
|
-3.48388152e-9, -1.813065896e-7, 2.75036225e-8, 7.4394531426e-5,
|
|
-0.042078604317, 3.052112654975
|
|
};
|
|
|
|
static double inclcof[] = {
|
|
1.2147e-16, 7.3759e-17, -8.26287e-14, 2.503410e-13, 2.4650839e-11,
|
|
-5.4000441e-11, 1.32115526e-9, -5.998737027e-7, -1.6242797091e-5,
|
|
0.002278495537, 0.0
|
|
};
|
|
#endif
|
|
|
|
#if PREC_BRETAGNON_2003
|
|
static double pAcof[] = { };
|
|
static double nodecof[] = { };
|
|
static double inclcof[] = { };
|
|
#endif
|
|
|
|
/* Subroutine arguments:
|
|
*
|
|
* R = rectangular equatorial coordinate vector to be precessed.
|
|
* The result is written back into the input vector.
|
|
* J = Julian date
|
|
* direction =
|
|
* Precess from J to J2000: direction = 1
|
|
* Precess from J2000 to J: direction = -1
|
|
* Note that if you want to precess from J1 to J2, you would
|
|
* first go from J1 to J2000, then call the program again
|
|
* to go from J2000 to J2.
|
|
*/
|
|
int
|
|
swi_precess(double *R, double J, int direction)
|
|
{
|
|
return precess0(R, J, direction);
|
|
}
|
|
|
|
static int
|
|
precess0(double *R, double J, int direction)
|
|
{
|
|
double sinth, costh, sinZ, cosZ, sinz, cosz;
|
|
double eps, sineps, coseps;
|
|
double A, B, T, Z, z, TH, pA, W;
|
|
double x[3], pmat[9];
|
|
double *p;
|
|
int i, j;
|
|
if (J == J2000)
|
|
return (0);
|
|
/* Each precession angle is specified by a polynomial in
|
|
* T = Julian centuries from J2000.0. See AA page B18.
|
|
*/
|
|
T = (J - J2000) / 36525.0;
|
|
/* Use IAU formula for a few centuries. */
|
|
if (PREC_IAU_1976 && fabs(T) <= PREC_IAU_1976_CTIES) {
|
|
Z = ((0.017998 * T + 0.30188) * T + 2306.2181) * T * DEGTORAD / 3600;
|
|
z = ((0.018203 * T + 1.09468) * T + 2306.2181) * T * DEGTORAD / 3600;
|
|
TH = ((-0.041833 * T - 0.42665) * T +
|
|
2004.3109) * T * DEGTORAD / 3600;
|
|
}
|
|
else if (PREC_IAU_2003 && fabs(T) <= PREC_IAU_2003_CTIES) {
|
|
Z = (((((-0.0000003173 * T - 0.000005971) * T + 0.01801828) * T +
|
|
0.2988499) * T + 2306.083227) * T +
|
|
2.650545) * DEGTORAD / 3600;
|
|
z = (((((-0.0000002904 * T - 0.000028596) * T + 0.01826837) * T +
|
|
1.0927348) * T + 2306.077181) * T -
|
|
2.650545) * DEGTORAD / 3600;
|
|
TH = ((((-0.00000011274 * T - 0.000007089) * T - 0.04182264) * T -
|
|
0.4294934) * T + 2004.191903) * T * DEGTORAD / 3600;
|
|
/* AA 2006 B28:
|
|
* Z = (((((- 0.0000002*T - 0.0000327)*T + 0.0179663)*T + 0.3019015)*T + 2306.0809506)*T + 2.5976176)*DEGTORAD/3600;
|
|
* z = (((((- 0.0000003*T - 0.000047)*T + 0.0182237)*T + 1.0947790)*T + 2306.0803226)*T - 2.5976176)*DEGTORAD/3600;
|
|
* TH = ((((-0.0000001*T - 0.0000601)*T - 0.0418251)*T - 0.4269353)*T + 2004.1917476)*T*DEGTORAD/3600;
|
|
*/
|
|
}
|
|
else if (PREC_BRETAGNON_2003) {
|
|
Z = ((((((-0.00000000013 * T - 0.0000003040) * T - 0.000005708) * T +
|
|
0.01801752) * T + 0.3023262) * T + 2306.080472) * T +
|
|
2.72767) * DEGTORAD / 3600;
|
|
z = ((((((-0.00000000005 * T - 0.0000002486) * T - 0.000028276) * T +
|
|
0.01826676) * T + 1.0956768) * T + 2306.076070) * T -
|
|
2.72767) * DEGTORAD / 3600;
|
|
TH = ((((((0.000000000009 * T + 0.00000000036) * T -
|
|
0.0000001127) * T - 0.000007291) * T - 0.04182364) * T -
|
|
0.4266980) * T + 2004.190936) * T * DEGTORAD / 3600;
|
|
}
|
|
else if (PREC_LASKAR_1986) {
|
|
goto laskar;
|
|
}
|
|
else { /* PREC_VONDRAK_2011 */
|
|
pre_pmat(J, pmat);
|
|
if (direction == -1) {
|
|
for (i = 0, j = 0; i <= 2; i++, j = i * 3) {
|
|
x[i] =
|
|
R[0] * pmat[j + 0] + R[1] * pmat[j + 1] + R[2] * pmat[j +
|
|
2];
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0, j = 0; i <= 2; i++, j = i * 3) {
|
|
x[i] =
|
|
R[0] * pmat[i + 0] + R[1] * pmat[i + 3] + R[2] * pmat[i +
|
|
6];
|
|
}
|
|
}
|
|
for (i = 0; i < 3; i++)
|
|
R[i] = x[i];
|
|
return (0);
|
|
}
|
|
sinth = sin(TH);
|
|
costh = cos(TH);
|
|
sinZ = sin(Z);
|
|
cosZ = cos(Z);
|
|
sinz = sin(z);
|
|
cosz = cos(z);
|
|
A = cosZ * costh;
|
|
B = sinZ * costh;
|
|
if (direction < 0) { /* From J2000.0 to J */
|
|
x[0] = (A * cosz - sinZ * sinz) * R[0]
|
|
- (B * cosz + cosZ * sinz) * R[1]
|
|
- sinth * cosz * R[2];
|
|
x[1] = (A * sinz + sinZ * cosz) * R[0]
|
|
- (B * sinz - cosZ * cosz) * R[1]
|
|
- sinth * sinz * R[2];
|
|
x[2] = cosZ * sinth * R[0]
|
|
- sinZ * sinth * R[1]
|
|
+ costh * R[2];
|
|
}
|
|
else { /* From J to J2000.0 */
|
|
x[0] = (A * cosz - sinZ * sinz) * R[0]
|
|
+ (A * sinz + sinZ * cosz) * R[1]
|
|
+ cosZ * sinth * R[2];
|
|
x[1] = -(B * cosz + cosZ * sinz) * R[0]
|
|
- (B * sinz - cosZ * cosz) * R[1]
|
|
- sinZ * sinth * R[2];
|
|
x[2] = -sinth * cosz * R[0]
|
|
- sinth * sinz * R[1]
|
|
+ costh * R[2];
|
|
}
|
|
goto done;
|
|
laskar:
|
|
/* Implementation by elementary rotations using Laskar's expansions.
|
|
* First rotate about the x axis from the initial equator
|
|
* to the ecliptic. (The input is equatorial.)
|
|
*/
|
|
if (direction == 1)
|
|
eps = swi_epsiln(J); /* To J2000 */
|
|
else
|
|
eps = swi_epsiln(J2000); /* From J2000 */
|
|
sineps = sin(eps);
|
|
coseps = cos(eps);
|
|
x[0] = R[0];
|
|
z = coseps * R[1] + sineps * R[2];
|
|
x[2] = -sineps * R[1] + coseps * R[2];
|
|
x[1] = z;
|
|
/* Precession in longitude */
|
|
T /= 10.0; /* thousands of years */
|
|
p = pAcof;
|
|
pA = *p++;
|
|
for (i = 0; i < 9; i++)
|
|
pA = pA * T + *p++;
|
|
pA *= DEGTORAD / 3600 * T;
|
|
/* Node of the moving ecliptic on the J2000 ecliptic.
|
|
*/
|
|
p = nodecof;
|
|
W = *p++;
|
|
for (i = 0; i < 10; i++)
|
|
W = W * T + *p++;
|
|
/* Rotate about z axis to the node.
|
|
*/
|
|
if (direction == 1)
|
|
z = W + pA;
|
|
else
|
|
z = W;
|
|
B = cos(z);
|
|
A = sin(z);
|
|
z = B * x[0] + A * x[1];
|
|
x[1] = -A * x[0] + B * x[1];
|
|
x[0] = z;
|
|
/* Rotate about new x axis by the inclination of the moving
|
|
* ecliptic on the J2000 ecliptic.
|
|
*/
|
|
p = inclcof;
|
|
z = *p++;
|
|
for (i = 0; i < 10; i++)
|
|
z = z * T + *p++;
|
|
if (direction == 1)
|
|
z = -z;
|
|
B = cos(z);
|
|
A = sin(z);
|
|
z = B * x[1] + A * x[2];
|
|
x[2] = -A * x[1] + B * x[2];
|
|
x[1] = z;
|
|
/* Rotate about new z axis back from the node.
|
|
*/
|
|
if (direction == 1)
|
|
z = -W;
|
|
else
|
|
z = -W - pA;
|
|
B = cos(z);
|
|
A = sin(z);
|
|
z = B * x[0] + A * x[1];
|
|
x[1] = -A * x[0] + B * x[1];
|
|
x[0] = z;
|
|
/* Rotate about x axis to final equator.
|
|
*/
|
|
if (direction == 1)
|
|
eps = swi_epsiln(J2000);
|
|
else
|
|
eps = swi_epsiln(J);
|
|
sineps = sin(eps);
|
|
coseps = cos(eps);
|
|
z = coseps * x[1] - sineps * x[2];
|
|
x[2] = sineps * x[1] + coseps * x[2];
|
|
x[1] = z;
|
|
done:
|
|
for (i = 0; i < 3; i++)
|
|
R[i] = x[i];
|
|
return (0);
|
|
}
|
|
|
|
#if NUT_IAU_1980
|
|
|
|
/* Nutation in longitude and obliquity
|
|
* computed at Julian date J.
|
|
*
|
|
* References:
|
|
* "Summary of 1980 IAU Theory of Nutation (Final Report of the
|
|
* IAU Working Group on Nutation)", P. K. Seidelmann et al., in
|
|
* Transactions of the IAU Vol. XVIII A, Reports on Astronomy,
|
|
* P. A. Wayman, ed.; D. Reidel Pub. Co., 1982.
|
|
*
|
|
* "Nutation and the Earth's Rotation",
|
|
* I.A.U. Symposium No. 78, May, 1977, page 256.
|
|
* I.A.U., 1980.
|
|
*
|
|
* Woolard, E.W., "A redevelopment of the theory of nutation",
|
|
* The Astronomical Journal, 58, 1-3 (1953).
|
|
*
|
|
* This program implements all of the 1980 IAU nutation series.
|
|
* Results checked at 100 points against the 1986 AA; all agreed.
|
|
*
|
|
*
|
|
* - S. L. Moshier, November 1987
|
|
* October, 1992 - typo fixed in nutation matrix
|
|
*
|
|
* - D. Koch, November 1995: small changes in structure,
|
|
* Corrections to IAU 1980 Series added from Expl. Suppl. p. 116
|
|
*
|
|
* Each term in the expansion has a trigonometric
|
|
* argument given by
|
|
* W = i*MM + j*MS + k*FF + l*DD + m*OM
|
|
* where the variables are defined below.
|
|
* The nutation in longitude is a sum of terms of the
|
|
* form (a + bT) * sin(W). The terms for nutation in obliquity
|
|
* are of the form (c + dT) * cos(W). The coefficients
|
|
* are arranged in the tabulation as follows:
|
|
*
|
|
* Coefficient:
|
|
* i j k l m a b c d
|
|
* 0, 0, 0, 0, 1, -171996, -1742, 92025, 89,
|
|
* The first line of the table, above, is done separately
|
|
* since two of the values do not fit into 16 bit integers.
|
|
* The values a and c are arc seconds times 10000. b and d
|
|
* are arc seconds per Julian century times 100000. i through m
|
|
* are integers. See the program for interpretation of MM, MS,
|
|
* etc., which are mean orbital elements of the Sun and Moon.
|
|
*
|
|
* If terms with coefficient less than X are omitted, the peak
|
|
* errors will be:
|
|
*
|
|
* omit error, omit error,
|
|
* a < longitude c < obliquity
|
|
* .0005" .0100" .0008" .0094"
|
|
* .0046 .0492 .0095 .0481
|
|
* .0123 .0880 .0224 .0905
|
|
* .0386 .1808 .0895 .1129
|
|
*/
|
|
static short FAR nt[] = {
|
|
|
|
/* LS and OC are units of 0.0001"
|
|
*LS2 and OC2 are units of 0.00001"
|
|
*MM,MS,FF,DD,OM, LS, LS2,OC, OC2 */
|
|
0, 0, 0, 0, 2, 2062, 2, -895, 5,
|
|
-2, 0, 2, 0, 1, 46, 0, -24, 0,
|
|
2, 0, -2, 0, 0, 11, 0, 0, 0,
|
|
-2, 0, 2, 0, 2, -3, 0, 1, 0,
|
|
1, -1, 0, -1, 0, -3, 0, 0, 0,
|
|
0, -2, 2, -2, 1, -2, 0, 1, 0,
|
|
2, 0, -2, 0, 1, 1, 0, 0, 0,
|
|
0, 0, 2, -2, 2, -13187, -16, 5736, -31,
|
|
0, 1, 0, 0, 0, 1426, -34, 54, -1,
|
|
0, 1, 2, -2, 2, -517, 12, 224, -6,
|
|
0, -1, 2, -2, 2, 217, -5, -95, 3,
|
|
0, 0, 2, -2, 1, 129, 1, -70, 0,
|
|
2, 0, 0, -2, 0, 48, 0, 1, 0,
|
|
0, 0, 2, -2, 0, -22, 0, 0, 0,
|
|
0, 2, 0, 0, 0, 17, -1, 0, 0,
|
|
0, 1, 0, 0, 1, -15, 0, 9, 0,
|
|
0, 2, 2, -2, 2, -16, 1, 7, 0,
|
|
0, -1, 0, 0, 1, -12, 0, 6, 0,
|
|
-2, 0, 0, 2, 1, -6, 0, 3, 0,
|
|
0, -1, 2, -2, 1, -5, 0, 3, 0,
|
|
2, 0, 0, -2, 1, 4, 0, -2, 0,
|
|
0, 1, 2, -2, 1, 4, 0, -2, 0,
|
|
1, 0, 0, -1, 0, -4, 0, 0, 0,
|
|
2, 1, 0, -2, 0, 1, 0, 0, 0,
|
|
0, 0, -2, 2, 1, 1, 0, 0, 0,
|
|
0, 1, -2, 2, 0, -1, 0, 0, 0,
|
|
0, 1, 0, 0, 2, 1, 0, 0, 0,
|
|
-1, 0, 0, 1, 1, 1, 0, 0, 0,
|
|
0, 1, 2, -2, 0, -1, 0, 0, 0,
|
|
0, 0, 2, 0, 2, -2274, -2, 977, -5,
|
|
1, 0, 0, 0, 0, 712, 1, -7, 0,
|
|
0, 0, 2, 0, 1, -386, -4, 200, 0,
|
|
1, 0, 2, 0, 2, -301, 0, 129, -1,
|
|
1, 0, 0, -2, 0, -158, 0, -1, 0,
|
|
-1, 0, 2, 0, 2, 123, 0, -53, 0,
|
|
0, 0, 0, 2, 0, 63, 0, -2, 0,
|
|
1, 0, 0, 0, 1, 63, 1, -33, 0,
|
|
-1, 0, 0, 0, 1, -58, -1, 32, 0,
|
|
-1, 0, 2, 2, 2, -59, 0, 26, 0,
|
|
1, 0, 2, 0, 1, -51, 0, 27, 0,
|
|
0, 0, 2, 2, 2, -38, 0, 16, 0,
|
|
2, 0, 0, 0, 0, 29, 0, -1, 0,
|
|
1, 0, 2, -2, 2, 29, 0, -12, 0,
|
|
2, 0, 2, 0, 2, -31, 0, 13, 0,
|
|
0, 0, 2, 0, 0, 26, 0, -1, 0,
|
|
-1, 0, 2, 0, 1, 21, 0, -10, 0,
|
|
-1, 0, 0, 2, 1, 16, 0, -8, 0,
|
|
1, 0, 0, -2, 1, -13, 0, 7, 0,
|
|
-1, 0, 2, 2, 1, -10, 0, 5, 0,
|
|
1, 1, 0, -2, 0, -7, 0, 0, 0,
|
|
0, 1, 2, 0, 2, 7, 0, -3, 0,
|
|
0, -1, 2, 0, 2, -7, 0, 3, 0,
|
|
1, 0, 2, 2, 2, -8, 0, 3, 0,
|
|
1, 0, 0, 2, 0, 6, 0, 0, 0,
|
|
2, 0, 2, -2, 2, 6, 0, -3, 0,
|
|
0, 0, 0, 2, 1, -6, 0, 3, 0,
|
|
0, 0, 2, 2, 1, -7, 0, 3, 0,
|
|
1, 0, 2, -2, 1, 6, 0, -3, 0,
|
|
0, 0, 0, -2, 1, -5, 0, 3, 0,
|
|
1, -1, 0, 0, 0, 5, 0, 0, 0,
|
|
2, 0, 2, 0, 1, -5, 0, 3, 0,
|
|
0, 1, 0, -2, 0, -4, 0, 0, 0,
|
|
1, 0, -2, 0, 0, 4, 0, 0, 0,
|
|
0, 0, 0, 1, 0, -4, 0, 0, 0,
|
|
1, 1, 0, 0, 0, -3, 0, 0, 0,
|
|
1, 0, 2, 0, 0, 3, 0, 0, 0,
|
|
1, -1, 2, 0, 2, -3, 0, 1, 0,
|
|
-1, -1, 2, 2, 2, -3, 0, 1, 0,
|
|
-2, 0, 0, 0, 1, -2, 0, 1, 0,
|
|
3, 0, 2, 0, 2, -3, 0, 1, 0,
|
|
0, -1, 2, 2, 2, -3, 0, 1, 0,
|
|
1, 1, 2, 0, 2, 2, 0, -1, 0,
|
|
-1, 0, 2, -2, 1, -2, 0, 1, 0,
|
|
2, 0, 0, 0, 1, 2, 0, -1, 0,
|
|
1, 0, 0, 0, 2, -2, 0, 1, 0,
|
|
3, 0, 0, 0, 0, 2, 0, 0, 0,
|
|
0, 0, 2, 1, 2, 2, 0, -1, 0,
|
|
-1, 0, 0, 0, 2, 1, 0, -1, 0,
|
|
1, 0, 0, -4, 0, -1, 0, 0, 0,
|
|
-2, 0, 2, 2, 2, 1, 0, -1, 0,
|
|
-1, 0, 2, 4, 2, -2, 0, 1, 0,
|
|
2, 0, 0, -4, 0, -1, 0, 0, 0,
|
|
1, 1, 2, -2, 2, 1, 0, -1, 0,
|
|
1, 0, 2, 2, 1, -1, 0, 1, 0,
|
|
-2, 0, 2, 4, 2, -1, 0, 1, 0,
|
|
-1, 0, 4, 0, 2, 1, 0, 0, 0,
|
|
1, -1, 0, -2, 0, 1, 0, 0, 0,
|
|
2, 0, 2, -2, 1, 1, 0, -1, 0,
|
|
2, 0, 2, 2, 2, -1, 0, 0, 0,
|
|
1, 0, 0, 2, 1, -1, 0, 0, 0,
|
|
0, 0, 4, -2, 2, 1, 0, 0, 0,
|
|
3, 0, 2, -2, 2, 1, 0, 0, 0,
|
|
1, 0, 2, -2, 0, -1, 0, 0, 0,
|
|
0, 1, 2, 0, 1, 1, 0, 0, 0,
|
|
-1, -1, 0, 2, 1, 1, 0, 0, 0,
|
|
0, 0, -2, 0, 1, -1, 0, 0, 0,
|
|
0, 0, 2, -1, 2, -1, 0, 0, 0,
|
|
0, 1, 0, 2, 0, -1, 0, 0, 0,
|
|
1, 0, -2, -2, 0, -1, 0, 0, 0,
|
|
0, -1, 2, 0, 1, -1, 0, 0, 0,
|
|
1, 1, 0, -2, 1, -1, 0, 0, 0,
|
|
1, 0, -2, 2, 0, -1, 0, 0, 0,
|
|
2, 0, 0, 2, 0, 1, 0, 0, 0,
|
|
0, 0, 2, 4, 2, -1, 0, 0, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 0, 0,
|
|
#if NUT_CORR_1987
|
|
|
|
/* corrections to IAU 1980 nutation series by Herring 1987
|
|
* in 0.00001" !!!
|
|
* LS OC */
|
|
101, 0, 0, 0, 1, -725, 0, 213, 0,
|
|
101, 1, 0, 0, 0, 523, 0, 208, 0,
|
|
101, 0, 2, -2, 2, 102, 0, -41, 0,
|
|
101, 0, 2, 0, 2, -81, 0, 32, 0,
|
|
|
|
/* LC OS !!! */
|
|
102, 0, 0, 0, 1, 417, 0, 224, 0,
|
|
102, 1, 0, 0, 0, 61, 0, -24, 0,
|
|
102, 0, 2, -2, 2, -118, 0, -47, 0,
|
|
#endif
|
|
ENDMARK,
|
|
};
|
|
#endif
|
|
|
|
#if NUT_IAU_1980
|
|
int
|
|
swi_nutation(double J, double *nutlo)
|
|
{
|
|
/* arrays to hold sines and cosines of multiple angles */
|
|
double ss[5][8];
|
|
double cc[5][8];
|
|
double arg;
|
|
double args[5];
|
|
double f, g, T, T2;
|
|
double MM, MS, FF, DD, OM;
|
|
double cu, su, cv, sv, sw, s;
|
|
double C, D;
|
|
int i, j, k, k1, m, n;
|
|
int ns[5];
|
|
short *p;
|
|
/* Julian centuries from 2000 January 1.5,
|
|
* barycentric dynamical time
|
|
*/
|
|
T = (J - 2451545.0) / 36525.0;
|
|
T2 = T * T;
|
|
/* Fundamental arguments in the FK5 reference system.
|
|
* The coefficients, originally given to 0.001",
|
|
* are converted here to degrees.
|
|
*/
|
|
/* longitude of the mean ascending node of the lunar orbit
|
|
* on the ecliptic, measured from the mean equinox of date
|
|
*/
|
|
OM = -6962890.539 * T + 450160.280 + (0.008 * T + 7.455) * T2;
|
|
OM = swe_degnorm(OM / 3600) * DEGTORAD;
|
|
/* mean longitude of the Sun minus the
|
|
* mean longitude of the Sun's perigee
|
|
*/
|
|
MS = 129596581.224 * T + 1287099.804 - (0.012 * T + 0.577) * T2;
|
|
MS = swe_degnorm(MS / 3600) * DEGTORAD;
|
|
/* mean longitude of the Moon minus the
|
|
* mean longitude of the Moon's perigee
|
|
*/
|
|
MM = 1717915922.633 * T + 485866.733 + (0.064 * T + 31.310) * T2;
|
|
MM = swe_degnorm(MM / 3600) * DEGTORAD;
|
|
/* mean longitude of the Moon minus the
|
|
* mean longitude of the Moon's node
|
|
*/
|
|
FF = 1739527263.137 * T + 335778.877 + (0.011 * T - 13.257) * T2;
|
|
FF = swe_degnorm(FF / 3600) * DEGTORAD;
|
|
/* mean elongation of the Moon from the Sun.
|
|
*/
|
|
DD = 1602961601.328 * T + 1072261.307 + (0.019 * T - 6.891) * T2;
|
|
DD = swe_degnorm(DD / 3600) * DEGTORAD;
|
|
args[0] = MM;
|
|
ns[0] = 3;
|
|
args[1] = MS;
|
|
ns[1] = 2;
|
|
args[2] = FF;
|
|
ns[2] = 4;
|
|
args[3] = DD;
|
|
ns[3] = 4;
|
|
args[4] = OM;
|
|
ns[4] = 2;
|
|
/* Calculate sin( i*MM ), etc. for needed multiple angles
|
|
*/
|
|
for (k = 0; k <= 4; k++) {
|
|
arg = args[k];
|
|
n = ns[k];
|
|
su = sin(arg);
|
|
cu = cos(arg);
|
|
ss[k][0] = su; /* sin(L) */
|
|
cc[k][0] = cu; /* cos(L) */
|
|
sv = 2.0 * su * cu;
|
|
cv = cu * cu - su * su;
|
|
ss[k][1] = sv; /* sin(2L) */
|
|
cc[k][1] = cv;
|
|
for (i = 2; i < n; i++) {
|
|
s = su * cv + cu * sv;
|
|
cv = cu * cv - su * sv;
|
|
sv = s;
|
|
ss[k][i] = sv; /* sin( i+1 L ) */
|
|
cc[k][i] = cv;
|
|
}
|
|
}
|
|
/* first terms, not in table: */
|
|
C = (-0.01742 * T - 17.1996) * ss[4][0]; /* sin(OM) */
|
|
D = (0.00089 * T + 9.2025) * cc[4][0]; /* cos(OM) */
|
|
for (p = &nt[0]; *p != ENDMARK; p += 9) {
|
|
/* argument of sine and cosine */
|
|
k1 = 0;
|
|
cv = 0.0;
|
|
sv = 0.0;
|
|
for (m = 0; m < 5; m++) {
|
|
j = p[m];
|
|
if (j > 100)
|
|
j = 0; /* p[0] is a flag */
|
|
if (j) {
|
|
k = j;
|
|
if (j < 0)
|
|
k = -k;
|
|
su = ss[m][k - 1]; /* sin(k*angle) */
|
|
if (j < 0)
|
|
su = -su;
|
|
cu = cc[m][k - 1];
|
|
if (k1 == 0) { /* set first angle */
|
|
sv = su;
|
|
cv = cu;
|
|
k1 = 1;
|
|
}
|
|
else { /* combine angles */
|
|
sw = su * cv + cu * sv;
|
|
cv = cu * cv - su * sv;
|
|
sv = sw;
|
|
}
|
|
}
|
|
}
|
|
/* longitude coefficient, in 0.0001" */
|
|
f = p[5] * 0.0001;
|
|
if (p[6] != 0)
|
|
f += 0.00001 * T * p[6];
|
|
/* obliquity coefficient, in 0.0001" */
|
|
g = p[7] * 0.0001;
|
|
if (p[8] != 0)
|
|
g += 0.00001 * T * p[8];
|
|
if (*p >= 100) { /* coefficients in 0.00001" */
|
|
f *= 0.1;
|
|
g *= 0.1;
|
|
}
|
|
/* accumulate the terms */
|
|
if (*p != 102) {
|
|
C += f * sv;
|
|
D += g * cv;
|
|
}
|
|
else { /* cos for nutl and sin for nuto */
|
|
C += f * cv;
|
|
D += g * sv;
|
|
}
|
|
/*
|
|
* if (i >= 105) {
|
|
* printf("%4.10f, %4.10f\n",f*sv,g*cv);
|
|
* }
|
|
*/
|
|
}
|
|
/*
|
|
* printf("%4.10f, %4.10f, %4.10f, %4.10f\n",MS*RADTODEG,FF*RADTODEG,DD*RADTODEG,OM*RADTODEG);
|
|
* printf( "nutation: in longitude %.9f\", in obliquity %.9f\"\n", C, D );
|
|
*/
|
|
/* Save answers, expressed in radians */
|
|
nutlo[0] = DEGTORAD * C / 3600.0;
|
|
nutlo[1] = DEGTORAD * D / 3600.0;
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
#if NUT_IAU_2000A || NUT_IAU_2000B
|
|
|
|
/* Nutation IAU 2000A model
|
|
* (MHB2000 luni-solar and planetary nutation, without free core nutation)
|
|
*
|
|
* Function returns nutation in longitude and obliquity in radians with
|
|
* respect to the equinox of date. For the obliquity of the ecliptic
|
|
* the calculation of Lieske & al. (1977) must be used.
|
|
*
|
|
* The precision in recent years is about 0.001 arc seconds.
|
|
*
|
|
* The calculation includes luni-solar and planetary nutation.
|
|
* Free core nutation, which cannot be predicted, is omitted,
|
|
* the error being of the order of a few 0.0001 arc seconds.
|
|
*
|
|
* References:
|
|
*
|
|
* Capitaine, N., Wallace, P.T., Chapront, J., A & A 432, 366 (2005).
|
|
*
|
|
* Chapront, J., Chapront-Touze, M. & Francou, G., A & A 387, 700 (2002).
|
|
*
|
|
* Lieske, J.H., Lederle, T., Fricke, W. & Morando, B., "Expressions
|
|
* for the precession quantities based upon the IAU (1976) System of
|
|
* Astronomical Constants", A & A 58, 1-16 (1977).
|
|
*
|
|
* Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation
|
|
* and precession New nutation series for nonrigid Earth and
|
|
* insights into the Earth's interior", J.Geophys.Res., 107, B4,
|
|
* 2002.
|
|
*
|
|
* Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
|
|
* Francou, G., Laskar, J., A & A 282, 663-683 (1994).
|
|
*
|
|
* Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., A & A Supp.
|
|
* Ser. 135, 111 (1999).
|
|
*
|
|
* Wallace, P.T., "Software for Implementing the IAU 2000
|
|
* Resolutions", in IERS Workshop 5.1 (2002).
|
|
*
|
|
* Nutation IAU 2000A series in:
|
|
* Kaplan, G.H., United States Naval Observatory Circular No. 179 (Oct. 2005)
|
|
* aa.usno.navy.mil/publications/docs/Circular_179.html
|
|
*
|
|
* MHB2000 code at
|
|
* - ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.
|
|
* - http://www.iau-sofa.rl.ac.uk/2005_0901/Downloads.html
|
|
*/
|
|
|
|
#include "swenut2000a.h"
|
|
int
|
|
swi_nutation(double J, double *nutlo)
|
|
{
|
|
int i, j, k, inls;
|
|
double M, SM, F, D, OM;
|
|
#if NUT_IAU_2000A
|
|
double AL, ALSU, AF, AD, AOM, APA;
|
|
double ALME, ALVE, ALEA, ALMA, ALJU, ALSA, ALUR, ALNE;
|
|
#endif
|
|
double darg, sinarg, cosarg;
|
|
double dpsi = 0, deps = 0;
|
|
double T = (J - J2000) / 36525.0;
|
|
/* luni-solar nutation */
|
|
/* Fundamental arguments, Simon & al. (1994) */
|
|
/* Mean anomaly of the Moon. */
|
|
M = swe_degnorm((485868.249036 +
|
|
T * (1717915923.2178 +
|
|
T * (31.8792 +
|
|
T * (0.051635 +
|
|
T * (-0.00024470))))) / 3600.0) *
|
|
DEGTORAD;
|
|
/* Mean anomaly of the Sun */
|
|
SM = swe_degnorm((1287104.79305 +
|
|
T * (129596581.0481 +
|
|
T * (-0.5532 +
|
|
T * (0.000136 +
|
|
T * (-0.00001149))))) / 3600.0) *
|
|
DEGTORAD;
|
|
/* Mean argument of the latitude of the Moon. */
|
|
F = swe_degnorm((335779.526232 +
|
|
T * (1739527262.8478 +
|
|
T * (-12.7512 +
|
|
T * (-0.001037 +
|
|
T * (0.00000417))))) / 3600.0) * DEGTORAD;
|
|
/* Mean elongation of the Moon from the Sun. */
|
|
D = swe_degnorm((1072260.70369 +
|
|
T * (1602961601.2090 +
|
|
T * (-6.3706 +
|
|
T * (0.006593 +
|
|
T * (-0.00003169))))) / 3600.0) *
|
|
DEGTORAD;
|
|
/* Mean longitude of the ascending node of the Moon. */
|
|
OM = swe_degnorm((450160.398036 +
|
|
T * (-6962890.5431 +
|
|
T * (7.4722 +
|
|
T * (0.007702 +
|
|
T * (-0.00005939))))) / 3600.0) *
|
|
DEGTORAD;
|
|
/* luni-solar nutation series, in reverse order, starting with small terms */
|
|
#if NUT_IAU_2000B
|
|
inls = NLS_2000B;
|
|
#else
|
|
inls = NLS;
|
|
#endif
|
|
for (i = inls - 1; i >= 0; i--) {
|
|
j = i * 5;
|
|
darg =
|
|
swe_radnorm((double)nls[j + 0] * M + (double)nls[j + 1] * SM +
|
|
(double)nls[j + 2] * F + (double)nls[j + 3] * D +
|
|
(double)nls[j + 4] * OM);
|
|
sinarg = sin(darg);
|
|
cosarg = cos(darg);
|
|
k = i * 6;
|
|
dpsi += (cls[k + 0] + cls[k + 1] * T) * sinarg + cls[k + 2] * cosarg;
|
|
deps += (cls[k + 3] + cls[k + 4] * T) * cosarg + cls[k + 5] * sinarg;
|
|
}
|
|
nutlo[0] = dpsi * O1MAS2DEG;
|
|
nutlo[1] = deps * O1MAS2DEG;
|
|
#if NUT_IAU_2000A
|
|
/* planetary nutation
|
|
* note: The MHB2000 code computes the luni-solar and planetary nutation
|
|
* in different routines, using slightly different Delaunay
|
|
* arguments in the two cases. This behaviour is faithfully
|
|
* reproduced here. Use of the Simon et al. expressions for both
|
|
* cases leads to negligible changes, well below 0.1 microarcsecond.*/
|
|
/* Mean anomaly of the Moon. */
|
|
AL = swe_radnorm(2.35555598 + 8328.6914269554 * T);
|
|
/* Mean anomaly of the Sun. */
|
|
ALSU = swe_radnorm(6.24006013 + 628.301955 * T);
|
|
/* Mean argument of the latitude of the Moon. */
|
|
AF = swe_radnorm(1.627905234 + 8433.466158131 * T);
|
|
/* Mean elongation of the Moon from the Sun. */
|
|
AD = swe_radnorm(5.198466741 + 7771.3771468121 * T);
|
|
/* Mean longitude of the ascending node of the Moon. */
|
|
AOM = swe_radnorm(2.18243920 - 33.757045 * T);
|
|
/* General accumulated precession in longitude. */
|
|
APA = (0.02438175 + 0.00000538691 * T) * T;
|
|
/* Planetary longitudes, Mercury through Neptune (Souchay et al. 1999). */
|
|
ALME = swe_radnorm(4.402608842 + 2608.7903141574 * T);
|
|
ALVE = swe_radnorm(3.176146697 + 1021.3285546211 * T);
|
|
ALEA = swe_radnorm(1.753470314 + 628.3075849991 * T);
|
|
ALMA = swe_radnorm(6.203480913 + 334.0612426700 * T);
|
|
ALJU = swe_radnorm(0.599546497 + 52.9690962641 * T);
|
|
ALSA = swe_radnorm(0.874016757 + 21.3299104960 * T);
|
|
ALUR = swe_radnorm(5.481293871 + 7.4781598567 * T);
|
|
ALNE = swe_radnorm(5.321159000 + 3.8127774000 * T);
|
|
/* planetary nutation series (in reverse order). */
|
|
dpsi = 0;
|
|
deps = 0;
|
|
for (i = NPL - 1; i >= 0; i--) {
|
|
j = i * 14;
|
|
darg =
|
|
swe_radnorm((double)npl[j + 0] * AL + (double)npl[j + 1] * ALSU +
|
|
(double)npl[j + 2] * AF + (double)npl[j + 3] * AD +
|
|
(double)npl[j + 4] * AOM + (double)npl[j + 5] * ALME +
|
|
(double)npl[j + 6] * ALVE + (double)npl[j +
|
|
7] * ALEA +
|
|
(double)npl[j + 8] * ALMA + (double)npl[j +
|
|
9] * ALJU +
|
|
(double)npl[j + 10] * ALSA + (double)npl[j +
|
|
11] * ALUR +
|
|
(double)npl[j + 12] * ALNE + (double)npl[j +
|
|
13] * APA);
|
|
k = i * 4;
|
|
sinarg = sin(darg);
|
|
cosarg = cos(darg);
|
|
dpsi += (double)icpl[k + 0] * sinarg + (double)icpl[k + 1] * cosarg;
|
|
deps += (double)icpl[k + 2] * sinarg + (double)icpl[k + 3] * cosarg;
|
|
}
|
|
nutlo[0] += dpsi * O1MAS2DEG;
|
|
nutlo[1] += deps * O1MAS2DEG;
|
|
#if 1
|
|
/* changes required by adoption of P03 precession
|
|
* according to Capitaine et al. A & A 412, 366 (2005) */
|
|
dpsi = -8.1 * sin(OM) - 0.6 * sin(2 * F - 2 * D + 2 * OM);
|
|
dpsi +=
|
|
T * (47.8 * sin(OM) + 3.7 * sin(2 * F - 2 * D + 2 * OM) +
|
|
0.6 * sin(2 * F + 2 * OM) - 0.6 * sin(2 * OM));
|
|
deps = T * (-25.6 * cos(OM) - 1.6 * cos(2 * F - 2 * D + 2 * OM));
|
|
nutlo[0] += dpsi / (3600.0 * 1000000.0);
|
|
nutlo[1] += deps / (3600.0 * 1000000.0);
|
|
#endif
|
|
#endif
|
|
nutlo[0] *= DEGTORAD;
|
|
nutlo[1] *= DEGTORAD;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* GCRS to J2000 */
|
|
void
|
|
swi_bias(double *x, int32 iflag, AS_BOOL backward)
|
|
{
|
|
#if 0
|
|
double DAS2R = 1.0 / 3600.0 * DEGTORAD;
|
|
double dpsi_bias = -0.041775 * DAS2R;
|
|
double deps_bias = -0.0068192 * DAS2R;
|
|
double dra0 = -0.0146 * DAS2R;
|
|
double deps2000 = 84381.448 * DAS2R;
|
|
#endif
|
|
double xx[6], rb[3][3];
|
|
int i;
|
|
rb[0][0] = +0.9999999999999942;
|
|
rb[0][1] = +0.0000000707827948;
|
|
rb[0][2] = -0.0000000805621738;
|
|
rb[1][0] = -0.0000000707827974;
|
|
rb[1][1] = +0.9999999999999969;
|
|
rb[1][2] = -0.0000000330604088;
|
|
rb[2][0] = +0.0000000805621715;
|
|
rb[2][1] = +0.0000000330604145;
|
|
rb[2][2] = +0.9999999999999962;
|
|
if (backward) {
|
|
for (i = 0; i <= 2; i++) {
|
|
xx[i] = x[0] * rb[i][0] + x[1] * rb[i][1] + x[2] * rb[i][2];
|
|
if (iflag & SEFLG_SPEED)
|
|
xx[i + 3] =
|
|
x[3] * rb[i][0] + x[4] * rb[i][1] + x[5] * rb[i][2];
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i <= 2; i++) {
|
|
xx[i] = x[0] * rb[0][i] + x[1] * rb[1][i] + x[2] * rb[2][i];
|
|
if (iflag & SEFLG_SPEED)
|
|
xx[i + 3] =
|
|
x[3] * rb[0][i] + x[4] * rb[1][i] + x[5] * rb[2][i];
|
|
}
|
|
}
|
|
for (i = 0; i <= 2; i++)
|
|
x[i] = xx[i];
|
|
if (iflag & SEFLG_SPEED)
|
|
for (i = 3; i <= 5; i++)
|
|
x[i] = xx[i];
|
|
}
|
|
|
|
|
|
/* GCRS to FK5 */
|
|
void
|
|
swi_icrs2fk5(double *x, int32 iflag, AS_BOOL backward)
|
|
{
|
|
#if 0
|
|
double DAS2R = 1.0 / 3600.0 * DEGTORAD;
|
|
double dra0 = -0.0229 * DAS2R;
|
|
double dxi0 = 0.0091 * DAS2R;
|
|
double det0 = -0.0199 * DAS2R;
|
|
#endif
|
|
double xx[6], rb[3][3];
|
|
int i;
|
|
rb[0][0] = +0.9999999999999928;
|
|
rb[0][1] = +0.0000001110223287;
|
|
rb[0][2] = +0.0000000441180557;
|
|
rb[1][0] = -0.0000001110223330;
|
|
rb[1][1] = +0.9999999999999891;
|
|
rb[1][2] = +0.0000000964779176;
|
|
rb[2][0] = -0.0000000441180450;
|
|
rb[2][1] = -0.0000000964779225;
|
|
rb[2][2] = +0.9999999999999943;
|
|
if (backward) {
|
|
for (i = 0; i <= 2; i++) {
|
|
xx[i] = x[0] * rb[i][0] + x[1] * rb[i][1] + x[2] * rb[i][2];
|
|
if (iflag & SEFLG_SPEED)
|
|
xx[i + 3] =
|
|
x[3] * rb[i][0] + x[4] * rb[i][1] + x[5] * rb[i][2];
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i <= 2; i++) {
|
|
xx[i] = x[0] * rb[0][i] + x[1] * rb[1][i] + x[2] * rb[2][i];
|
|
if (iflag & SEFLG_SPEED)
|
|
xx[i + 3] =
|
|
x[3] * rb[0][i] + x[4] * rb[1][i] + x[5] * rb[2][i];
|
|
}
|
|
}
|
|
for (i = 0; i <= 5; i++)
|
|
x[i] = xx[i];
|
|
}
|
|
|
|
/* DeltaT = Ephemeris Time - Universal Time, in days.
|
|
*
|
|
* 1620 - today + a couple of years:
|
|
* ---------------------------------
|
|
* The tabulated values of deltaT, in hundredths of a second,
|
|
* were taken from The Astronomical Almanac 1997, page K8. The program
|
|
* adjusts for a value of secular tidal acceleration ndot = -25.7376.
|
|
* arcsec per century squared, the value used in JPL's DE403 ephemeris.
|
|
* ELP2000 (and DE200) used the value -23.8946.
|
|
* To change ndot, one can
|
|
* either redefine SE_TIDAL_DEFAULT in swephexp.h
|
|
* or use the routine swe_set_tid_acc() before calling Swiss
|
|
* Ephemeris.
|
|
* Bessel's interpolation formula is implemented to obtain fourth
|
|
* order interpolated values at intermediate times.
|
|
*
|
|
* -1000 - 1620:
|
|
* ---------------------------------
|
|
* For dates between -500 and 1600, the table given by Morrison &
|
|
* Stephenson (2004; p. 332) is used, with linear interpolation.
|
|
* This table is based on an assumed value of ndot = -26.
|
|
* The program adjusts for ndot = -25.7376.
|
|
* For 1600 - 1620, a linear interpolation between the last value
|
|
* of the latter and the first value of the former table is made.
|
|
*
|
|
* before -1000:
|
|
* ---------------------------------
|
|
* For times before -1100, a formula of Morrison & Stephenson (2004)
|
|
* (p. 332) is used:
|
|
* dt = 32 * t * t - 20 sec, where t is centuries from 1820 AD.
|
|
* For -1100 to -1000, a transition from this formula to the Stephenson
|
|
* table has been implemented in order to avoid a jump.
|
|
*
|
|
* future:
|
|
* ---------------------------------
|
|
* For the time after the last tabulated value, we use the formula
|
|
* of Stephenson (1997; p. 507), with a modification that avoids a jump
|
|
* at the end of the tabulated period. A linear term is added that
|
|
* makes a slow transition from the table to the formula over a period
|
|
* of 100 years. (Need not be updated, when table will be enlarged.)
|
|
*
|
|
* References:
|
|
*
|
|
* Stephenson, F. R., and L. V. Morrison, "Long-term changes
|
|
* in the rotation of the Earth: 700 B.C. to A.D. 1980,"
|
|
* Philosophical Transactions of the Royal Society of London
|
|
* Series A 313, 47-70 (1984)
|
|
*
|
|
* Borkowski, K. M., "ELP2000-85 and the Dynamical Time
|
|
* - Universal Time relation," Astronomy and Astrophysics
|
|
* 205, L8-L10 (1988)
|
|
* Borkowski's formula is derived from partly doubtful eclipses
|
|
* going back to 2137 BC and uses lunar position based on tidal
|
|
* coefficient of -23.9 arcsec/cy^2.
|
|
*
|
|
* Chapront-Touze, Michelle, and Jean Chapront, _Lunar Tables
|
|
* and Programs from 4000 B.C. to A.D. 8000_, Willmann-Bell 1991
|
|
* Their table agrees with the one here, but the entries are
|
|
* rounded to the nearest whole second.
|
|
*
|
|
* Stephenson, F. R., and M. A. Houlden, _Atlas of Historical
|
|
* Eclipse Maps_, Cambridge U. Press (1986)
|
|
*
|
|
* Stephenson, F.R. & Morrison, L.V., "Long-Term Fluctuations in
|
|
* the Earth's Rotation: 700 BC to AD 1990", Philosophical
|
|
* Transactions of the Royal Society of London,
|
|
* Ser. A, 351 (1995), 165-202.
|
|
*
|
|
* Stephenson, F. Richard, _Historical Eclipses and Earth's
|
|
* Rotation_, Cambridge U. Press (1997)
|
|
*
|
|
* Morrison, L. V., and F.R. Stephenson, "Historical Values of the Earth's
|
|
* Clock Error DT and the Calculation of Eclipses", JHA xxxv (2004),
|
|
* pp.327-336
|
|
*
|
|
* Table from AA for 1620 through today
|
|
* Note, Stephenson and Morrison's table starts at the year 1630.
|
|
* The Chapronts' table does not agree with the Almanac prior to 1630.
|
|
* The actual accuracy decreases rapidly prior to 1780.
|
|
*
|
|
* Jean Meeus, Astronomical Algorithms, 2nd edition, 1998.
|
|
*
|
|
* For a comprehensive collection of publications and formulae, see:
|
|
* http://www.phys.uu.nl/~vgent/deltat/deltat_modern.htm
|
|
* http://www.phys.uu.nl/~vgent/deltat/deltat_old.htm
|
|
*
|
|
* For future values of delta t, the following data from the
|
|
* Earth Orientation Department of the US Naval Observatory can be used:
|
|
* (TAI-UTC) from: ftp://maia.usno.navy.mil/ser7/tai-utc.dat
|
|
* (UT1-UTC) from: ftp://maia.usno.navy.mil/ser7/finals.all
|
|
* file description in: ftp://maia.usno.navy.mil/ser7/readme.finals
|
|
* Delta T = TAI-UT1 + 32.184 sec = (TAI-UTC) - (UT1-UTC) + 32.184 sec
|
|
*
|
|
* Also, there is the following file:
|
|
* http://maia.usno.navy.mil/ser7/deltat.data, but it is about 3 months
|
|
* behind (on 3 feb 2009)
|
|
*
|
|
* Last update of table dt[]: Dieter Koch, 27 april 2010.
|
|
* ATTENTION: Whenever updating this table, do not forget to adjust
|
|
* the macros TABEND and TABSIZ !
|
|
*/
|
|
#define TABSTART 1620
|
|
#define TABEND 2017
|
|
#define TABSIZ (TABEND-TABSTART+1)
|
|
|
|
/* we make the table greater for additional values read from external file */
|
|
#define TABSIZ_SPACE (TABSIZ+100)
|
|
static double FAR dt[TABSIZ_SPACE] = {
|
|
|
|
/* 1620.0 thru 1659.0 */
|
|
124.00, 119.00, 115.00, 110.00, 106.00, 102.00, 98.00, 95.00, 91.00,
|
|
88.00,
|
|
85.00, 82.00, 79.00, 77.00, 74.00, 72.00, 70.00, 67.00, 65.00, 63.00,
|
|
62.00, 60.00, 58.00, 57.00, 55.00, 54.00, 53.00, 51.00, 50.00, 49.00,
|
|
48.00, 47.00, 46.00, 45.00, 44.00, 43.00, 42.00, 41.00, 40.00, 38.00,
|
|
|
|
/* 1660.0 thru 1699.0 */
|
|
37.00, 36.00, 35.00, 34.00, 33.00, 32.00, 31.00, 30.00, 28.00, 27.00,
|
|
26.00, 25.00, 24.00, 23.00, 22.00, 21.00, 20.00, 19.00, 18.00, 17.00,
|
|
16.00, 15.00, 14.00, 14.00, 13.00, 12.00, 12.00, 11.00, 11.00, 10.00,
|
|
10.00, 10.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00,
|
|
|
|
/* 1700.0 thru 1739.0 */
|
|
9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 9.00, 10.00, 10.00,
|
|
10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 11.00, 11.00, 11.00,
|
|
11.00, 11.00, 11.00, 11.00, 11.00, 11.00, 11.00, 11.00, 11.00, 11.00,
|
|
11.00, 11.00, 11.00, 11.00, 12.00, 12.00, 12.00, 12.00, 12.00, 12.00,
|
|
|
|
/* 1740.0 thru 1779.0 */
|
|
12.00, 12.00, 12.00, 12.00, 13.00, 13.00, 13.00, 13.00, 13.00, 13.00,
|
|
13.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 15.00, 15.00,
|
|
15.00, 15.00, 15.00, 15.00, 15.00, 16.00, 16.00, 16.00, 16.00, 16.00,
|
|
16.00, 16.00, 16.00, 16.00, 16.00, 17.00, 17.00, 17.00, 17.00, 17.00,
|
|
|
|
/* 1780.0 thru 1799.0 */
|
|
17.00, 17.00, 17.00, 17.00, 17.00, 17.00, 17.00, 17.00, 17.00, 17.00,
|
|
17.00, 17.00, 16.00, 16.00, 16.00, 16.00, 15.00, 15.00, 14.00, 14.00,
|
|
|
|
/* 1800.0 thru 1819.0 */
|
|
13.70, 13.40, 13.10, 12.90, 12.70, 12.60, 12.50, 12.50, 12.50, 12.50,
|
|
12.50, 12.50, 12.50, 12.50, 12.50, 12.50, 12.50, 12.40, 12.30, 12.20,
|
|
|
|
/* 1820.0 thru 1859.0 */
|
|
12.00, 11.70, 11.40, 11.10, 10.60, 10.20, 9.60, 9.10, 8.60, 8.00,
|
|
7.50, 7.00, 6.60, 6.30, 6.00, 5.80, 5.70, 5.60, 5.60, 5.60,
|
|
5.70, 5.80, 5.90, 6.10, 6.20, 6.30, 6.50, 6.60, 6.80, 6.90,
|
|
7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.70, 7.80, 7.80,
|
|
|
|
/* 1860.0 thru 1899.0 */
|
|
7.88, 7.82, 7.54, 6.97, 6.40, 6.02, 5.41, 4.10, 2.92, 1.82,
|
|
1.61, .10, -1.02, -1.28, -2.69, -3.24, -3.64, -4.54, -4.71, -5.11,
|
|
-5.40, -5.42, -5.20, -5.46, -5.46, -5.79, -5.63, -5.64, -5.80, -5.66,
|
|
-5.87, -6.01, -6.19, -6.64, -6.44, -6.47, -6.09, -5.76, -4.66, -3.74,
|
|
|
|
/* 1900.0 thru 1939.0 */
|
|
-2.72, -1.54, -.02, 1.24, 2.64, 3.86, 5.37, 6.14, 7.75, 9.13,
|
|
10.46, 11.53, 13.36, 14.65, 16.01, 17.20, 18.24, 19.06, 20.25, 20.95,
|
|
21.16, 22.25, 22.41, 23.03, 23.49, 23.62, 23.86, 24.49, 24.34, 24.08,
|
|
24.02, 24.00, 23.87, 23.95, 23.86, 23.93, 23.73, 23.92, 23.96, 24.02,
|
|
|
|
/* 1940.0 thru 1979.0 */
|
|
24.33, 24.83, 25.30, 25.70, 26.24, 26.77, 27.28, 27.78, 28.25, 28.71,
|
|
29.15, 29.57, 29.97, 30.36, 30.72, 31.07, 31.35, 31.68, 32.18, 32.68,
|
|
33.15, 33.59, 34.00, 34.47, 35.03, 35.73, 36.54, 37.43, 38.29, 39.20,
|
|
40.18, 41.17, 42.23, 43.37, 44.49, 45.48, 46.46, 47.52, 48.53, 49.59,
|
|
|
|
/* 1980.0 thru 1999.0 */
|
|
50.54, 51.38, 52.17, 52.96, 53.79, 54.34, 54.87, 55.32, 55.82, 56.30,
|
|
56.86, 57.57, 58.31, 59.12, 59.98, 60.78, 61.63, 62.30, 62.97, 63.47,
|
|
|
|
/* 2000.0 thru 2009.0 */
|
|
63.83, 64.09, 64.30, 64.47, 64.57, 64.69, 64.85, 65.15, 65.46, 65.78,
|
|
|
|
/* 2010.0 thru 2013.0 */
|
|
66.07, 66.32, 66.60, 66.91,
|
|
|
|
/* Extrapolated values, 2014 - 2017 */
|
|
67.50, 68.00, 68.50, 69.00,
|
|
};
|
|
|
|
#define ESPENAK_MEEUS_2006 TRUE
|
|
#define TAB2_SIZ 27
|
|
#define TAB2_START (-1000)
|
|
#define TAB2_END 1600
|
|
#define TAB2_STEP 100
|
|
#define LTERM_EQUATION_YSTART 1820
|
|
#define LTERM_EQUATION_COEFF 32
|
|
|
|
/* Table for -1000 through 1600, from Morrison & Stephenson (2004). */
|
|
static short FAR dt2[TAB2_SIZ] = {
|
|
|
|
/*-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100*/
|
|
25400, 23700, 22000, 21000, 19040, 17190, 15530, 14080, 12790, 11640,
|
|
|
|
/* 0 100 200 300 400 500 600 700 800 900*/
|
|
10580, 9600, 8640, 7680, 6700, 5710, 4740, 3810, 2960, 2200,
|
|
|
|
/* 1000 1100 1200 1300 1400 1500 1600, */
|
|
1570, 1090, 740, 490, 320, 200, 120,
|
|
};
|
|
|
|
/* returns DeltaT (ET - UT) in days
|
|
* double tjd = julian day in UT
|
|
*/
|
|
#define DEMO 0
|
|
double FAR PASCAL_CONV
|
|
swe_deltat(double tjd)
|
|
{
|
|
double ans = 0;
|
|
double B, Y, Ygreg, dd;
|
|
int iy;
|
|
/* read additional values from swedelta.txt */
|
|
AS_BOOL use_espenak_meeus = ESPENAK_MEEUS_2006;
|
|
Y = 2000.0 + (tjd - J2000) / 365.25;
|
|
Ygreg = 2000.0 + (tjd - J2000) / 365.2425;
|
|
/* Before 1633 AD, if the macro ESPENAK_MEEUS_2006 is TRUE:
|
|
* Polynomials by Espenak & Meeus 2006, derived from Stephenson & Morrison
|
|
* 2004.
|
|
* Note, Espenak & Meeus use their formulae only from 2000 BC on.
|
|
* However, they use the long-term formula of Morrison & Stephenson,
|
|
* which can be used even for the remoter past.
|
|
*/
|
|
if (use_espenak_meeus && tjd < 2317746.13090277789) {
|
|
return deltat_espenak_meeus_1620(tjd);
|
|
}
|
|
/* If the macro ESPENAK_MEEUS_2006 is FALSE:
|
|
* Before 1620, we follow Stephenson & Morrsion 2004. For the tabulated
|
|
* values 1000 BC through 1600 AD, we use linear interpolation.
|
|
*/
|
|
if (Y < TABSTART) {
|
|
if (Y < TAB2_END) {
|
|
return deltat_stephenson_morrison_1600(tjd);
|
|
}
|
|
else {
|
|
/* between 1600 and 1620:
|
|
* linear interpolation between
|
|
* end of table dt2 and start of table dt */
|
|
if (Y >= TAB2_END) {
|
|
B = TABSTART - TAB2_END;
|
|
iy = (TAB2_END - TAB2_START) / TAB2_STEP;
|
|
dd = (Y - TAB2_END) / B;
|
|
/*ans = dt2[iy] + dd * (dt[0] / 100.0 - dt2[iy]); */
|
|
ans = dt2[iy] + dd * (dt[0] - dt2[iy]);
|
|
ans = adjust_for_tidacc(ans, Ygreg);
|
|
return ans / 86400.0;
|
|
}
|
|
}
|
|
}
|
|
/* 1620 - today + a few years (tabend):
|
|
* Besselian interpolation from tabulated values in table dt.
|
|
* See AA page K11.
|
|
*/
|
|
if (Y >= TABSTART) {
|
|
return deltat_aa(tjd);
|
|
}
|
|
#ifdef TRACE
|
|
swi_open_trace(NULL);
|
|
if (swi_trace_count < TRACE_COUNT_MAX) {
|
|
if (swi_fp_trace_c != NULL) {
|
|
fputs("\n/*SWE_DELTAT*/\n", swi_fp_trace_c);
|
|
fprintf(swi_fp_trace_c, " tjd = %.9f;", tjd);
|
|
fprintf(swi_fp_trace_c, " t = swe_deltat(tjd);\n");
|
|
fputs(" printf(\"swe_deltat: %f\\t%f\\t\\n\", ", swi_fp_trace_c);
|
|
fputs("tjd, t);\n", swi_fp_trace_c);
|
|
fflush(swi_fp_trace_c);
|
|
}
|
|
if (swi_fp_trace_out != NULL) {
|
|
fprintf(swi_fp_trace_out, "swe_deltat: %f\t%f\t\n", tjd, ans);
|
|
fflush(swi_fp_trace_out);
|
|
}
|
|
}
|
|
#endif
|
|
return ans / 86400.0;
|
|
}
|
|
|
|
static double
|
|
deltat_aa(double tjd)
|
|
{
|
|
double ans = 0, ans2, ans3;
|
|
double p, B, B2, Y, dd;
|
|
double d[6];
|
|
int i, iy, k;
|
|
/* read additional values from swedelta.txt */
|
|
int tabsiz = init_dt();
|
|
int tabend = TABSTART + tabsiz - 1;
|
|
/*Y = 2000.0 + (tjd - J2000)/365.25; */
|
|
Y = 2000.0 + (tjd - J2000) / 365.2425;
|
|
if (Y <= tabend) {
|
|
/* Index into the table.
|
|
*/
|
|
p = floor(Y);
|
|
iy = (int)(p - TABSTART);
|
|
/* Zeroth order estimate is value at start of year
|
|
*/
|
|
ans = dt[iy];
|
|
k = iy + 1;
|
|
if (k >= tabsiz)
|
|
goto done; /* No data, can't go on. */
|
|
/* The fraction of tabulation interval
|
|
*/
|
|
p = Y - p;
|
|
/* First order interpolated value
|
|
*/
|
|
ans += p * (dt[k] - dt[iy]);
|
|
if ((iy - 1 < 0) || (iy + 2 >= tabsiz))
|
|
goto done; /* can't do second differences */
|
|
/* Make table of first differences
|
|
*/
|
|
k = iy - 2;
|
|
for (i = 0; i < 5; i++) {
|
|
if ((k < 0) || (k + 1 >= tabsiz))
|
|
d[i] = 0;
|
|
else
|
|
d[i] = dt[k + 1] - dt[k];
|
|
k += 1;
|
|
}
|
|
/* Compute second differences
|
|
*/
|
|
for (i = 0; i < 4; i++)
|
|
d[i] = d[i + 1] - d[i];
|
|
B = 0.25 * p * (p - 1.0);
|
|
ans += B * (d[1] + d[2]);
|
|
#if DEMO
|
|
printf("B %.4lf, ans %.4lf\n", B, ans);
|
|
#endif
|
|
if (iy + 2 >= tabsiz)
|
|
goto done;
|
|
/* Compute third differences
|
|
*/
|
|
for (i = 0; i < 3; i++)
|
|
d[i] = d[i + 1] - d[i];
|
|
B = 2.0 * B / 3.0;
|
|
ans += (p - 0.5) * B * d[1];
|
|
#if DEMO
|
|
printf("B %.4lf, ans %.4lf\n", B * (p - 0.5), ans);
|
|
#endif
|
|
if ((iy - 2 < 0) || (iy + 3 > tabsiz))
|
|
goto done;
|
|
/* Compute fourth differences
|
|
*/
|
|
for (i = 0; i < 2; i++)
|
|
d[i] = d[i + 1] - d[i];
|
|
B = 0.125 * B * (p + 1.0) * (p - 2.0);
|
|
ans += B * (d[0] + d[1]);
|
|
#if DEMO
|
|
printf("B %.4lf, ans %.4lf\n", B, ans);
|
|
#endif
|
|
done:
|
|
ans = adjust_for_tidacc(ans, Y);
|
|
return ans / 86400.0;
|
|
}
|
|
/* today - :
|
|
* Formula Stephenson (1997; p. 507),
|
|
* with modification to avoid jump at end of AA table,
|
|
* similar to what Meeus 1998 had suggested.
|
|
* Slow transition within 100 years.
|
|
*/
|
|
B = 0.01 * (Y - 1820);
|
|
ans = -20 + 31 * B * B;
|
|
/* slow transition from tabulated values to Stephenson formula: */
|
|
if (Y <= tabend + 100) {
|
|
B2 = 0.01 * (tabend - 1820);
|
|
ans2 = -20 + 31 * B2 * B2;
|
|
ans3 = dt[tabsiz - 1];
|
|
dd = (ans2 - ans3);
|
|
ans += dd * (Y - (tabend + 100)) * 0.01;
|
|
}
|
|
return ans / 86400.0;
|
|
}
|
|
|
|
static double
|
|
deltat_longterm_morrison_stephenson(double tjd)
|
|
{
|
|
double Ygreg = 2000.0 + (tjd - J2000) / 365.2425;
|
|
double u = (Ygreg - 1820) / 100.0;
|
|
return (-20 + 32 * u * u);
|
|
}
|
|
|
|
static double
|
|
deltat_stephenson_morrison_1600(double tjd)
|
|
{
|
|
double ans = 0, ans2, ans3;
|
|
double p, B, dd;
|
|
double tjd0;
|
|
int iy;
|
|
/* read additional values from swedelta.txt */
|
|
double Y = 2000.0 + (tjd - J2000) / 365.2425;
|
|
/* double Y = 2000.0 + (tjd - J2000)/365.25; */
|
|
/* before -1000:
|
|
* formula by Stephenson&Morrison (2004; p. 335) but adjusted to fit the
|
|
* starting point of table dt2. */
|
|
if (Y < TAB2_START) {
|
|
/*B = (Y - LTERM_EQUATION_YSTART) * 0.01;
|
|
* ans = -20 + LTERM_EQUATION_COEFF * B * B; */
|
|
ans = deltat_longterm_morrison_stephenson(tjd);
|
|
ans = adjust_for_tidacc(ans, Y);
|
|
/* transition from formula to table over 100 years */
|
|
if (Y >= TAB2_START - 100) {
|
|
/* starting value of table dt2: */
|
|
ans2 = adjust_for_tidacc(dt2[0], TAB2_START);
|
|
/* value of formula at epoch TAB2_START */
|
|
/* B = (TAB2_START - LTERM_EQUATION_YSTART) * 0.01;
|
|
* ans3 = -20 + LTERM_EQUATION_COEFF * B * B; */
|
|
tjd0 = (TAB2_START - 2000) * 365.2425 + J2000;
|
|
ans3 = deltat_longterm_morrison_stephenson(tjd0);
|
|
ans3 = adjust_for_tidacc(ans3, Y);
|
|
dd = ans3 - ans2;
|
|
B = (Y - (TAB2_START - 100)) * 0.01;
|
|
/* fit to starting point of table dt2. */
|
|
ans = ans - dd * B;
|
|
}
|
|
}
|
|
/* between -1000 and 1600:
|
|
* linear interpolation between values of table dt2 (Stephenson&Morrison 2004) */
|
|
if (Y >= TAB2_START && Y < TAB2_END) {
|
|
double Yjul = 2000 + (tjd - 2451557.5) / 365.25;
|
|
p = floor(Yjul);
|
|
iy = (int)((p - TAB2_START) / TAB2_STEP);
|
|
dd = (Yjul - (TAB2_START + TAB2_STEP * iy)) / TAB2_STEP;
|
|
ans = dt2[iy] + (dt2[iy + 1] - dt2[iy]) * dd;
|
|
/* correction for tidal acceleration used by our ephemeris */
|
|
ans = adjust_for_tidacc(ans, Y);
|
|
}
|
|
ans /= 86400.0;
|
|
return ans;
|
|
}
|
|
|
|
static double
|
|
deltat_espenak_meeus_1620(double tjd)
|
|
{
|
|
double ans = 0;
|
|
double Ygreg;
|
|
double u;
|
|
/* double Y = 2000.0 + (tjd - J2000)/365.25; */
|
|
Ygreg = 2000.0 + (tjd - J2000) / 365.2425;
|
|
if (Ygreg < -500) {
|
|
ans = deltat_longterm_morrison_stephenson(tjd);
|
|
}
|
|
else if (Ygreg < 500) {
|
|
u = Ygreg / 100.0;
|
|
ans =
|
|
(((((0.0090316521 * u + 0.022174192) * u - 0.1798452) * u -
|
|
5.952053) * u + 33.78311) * u - 1014.41) * u + 10583.6;
|
|
}
|
|
else if (Ygreg < 1600) {
|
|
u = (Ygreg - 1000) / 100.0;
|
|
ans =
|
|
(((((0.0083572073 * u - 0.005050998) * u - 0.8503463) * u +
|
|
0.319781) * u + 71.23472) * u - 556.01) * u + 1574.2;
|
|
}
|
|
else if (Ygreg < 1700) {
|
|
u = Ygreg - 1600;
|
|
ans = 120 - 0.9808 * u - 0.01532 * u * u + u * u * u / 7129.0;
|
|
}
|
|
else if (Ygreg < 1800) {
|
|
u = Ygreg - 1700;
|
|
ans =
|
|
(((-u / 1174000.0 + 0.00013336) * u - 0.0059285) * u +
|
|
0.1603) * u + 8.83;
|
|
}
|
|
else if (Ygreg < 1860) {
|
|
u = Ygreg - 1800;
|
|
ans =
|
|
((((((0.000000000875 * u - 0.0000001699) * u + 0.0000121272) * u -
|
|
0.00037436) * u + 0.0041116) * u + 0.0068612) * u -
|
|
0.332447) * u + 13.72;
|
|
}
|
|
else if (Ygreg < 1900) {
|
|
u = Ygreg - 1860;
|
|
ans =
|
|
((((u / 233174.0 - 0.0004473624) * u + 0.01680668) * u -
|
|
0.251754) * u + 0.5737) * u + 7.62;
|
|
}
|
|
else if (Ygreg < 1920) {
|
|
u = Ygreg - 1900;
|
|
ans =
|
|
(((-0.000197 * u + 0.0061966) * u - 0.0598939) * u +
|
|
1.494119) * u - 2.79;
|
|
}
|
|
else if (Ygreg < 1941) {
|
|
u = Ygreg - 1920;
|
|
ans = 21.20 + 0.84493 * u - 0.076100 * u * u + 0.0020936 * u * u * u;
|
|
}
|
|
else if (Ygreg < 1961) {
|
|
u = Ygreg - 1950;
|
|
ans = 29.07 + 0.407 * u - u * u / 233.0 + u * u * u / 2547.0;
|
|
}
|
|
else if (Ygreg < 1986) {
|
|
u = Ygreg - 1975;
|
|
ans = 45.45 + 1.067 * u - u * u / 260.0 - u * u * u / 718.0;
|
|
}
|
|
else if (Ygreg < 2005) {
|
|
u = Ygreg - 2000;
|
|
ans =
|
|
((((0.00002373599 * u + 0.000651814) * u + 0.0017275) * u -
|
|
0.060374) * u + 0.3345) * u + 63.86;
|
|
}
|
|
ans = adjust_for_tidacc(ans, Ygreg);
|
|
ans /= 86400.0;
|
|
return ans;
|
|
}
|
|
|
|
/* Read delta t values from external file.
|
|
* record structure: year(whitespace)delta_t in 0.01 sec.
|
|
*/
|
|
static int
|
|
init_dt(void)
|
|
{
|
|
FILE *fp;
|
|
int year;
|
|
int tab_index;
|
|
int tabsiz;
|
|
int i;
|
|
char s[AS_MAXCH];
|
|
char *sp;
|
|
if (!init_dt_done) {
|
|
init_dt_done = TRUE;
|
|
/* no error message if file is missing */
|
|
if ((fp =
|
|
swi_fopen(-1, "swe_deltat.txt", swed.ephepath, NULL)) == NULL
|
|
&& (fp =
|
|
swi_fopen(-1, "sedeltat.txt", swed.ephepath, NULL)) == NULL)
|
|
return TABSIZ;
|
|
while (fgets(s, AS_MAXCH, fp) != NULL) {
|
|
sp = s;
|
|
while (strchr(" \t", *sp) != NULL && *sp != '\0')
|
|
sp++; /* was *sp++ fixed by Alois 2-jul-2003 */
|
|
if (*sp == '#' || *sp == '\n')
|
|
continue;
|
|
year = atoi(s);
|
|
tab_index = year - TABSTART;
|
|
/* table space is limited. no error msg, if exceeded */
|
|
if (tab_index >= TABSIZ_SPACE)
|
|
continue;
|
|
sp += 4;
|
|
while (strchr(" \t", *sp) != NULL && *sp != '\0')
|
|
sp++; /* was *sp++ fixed by Alois 2-jul-2003 */
|
|
/*dt[tab_index] = (short) (atof(sp) * 100 + 0.5); */
|
|
dt[tab_index] = atof(sp);
|
|
}
|
|
fclose(fp);
|
|
}
|
|
/* find table size */
|
|
tabsiz = 2001 - TABSTART + 1;
|
|
for (i = tabsiz - 1; i < TABSIZ_SPACE; i++) {
|
|
if (dt[i] == 0)
|
|
break;
|
|
else
|
|
tabsiz++;
|
|
}
|
|
tabsiz--;
|
|
return tabsiz;
|
|
}
|
|
|
|
/* Astronomical Almanac table is corrected by adding the expression
|
|
* -0.000091 (ndot + 26)(year-1955)^2 seconds
|
|
* to entries prior to 1955 (AA page K8), where ndot is the secular
|
|
* tidal term in the mean motion of the Moon.
|
|
*
|
|
* Entries after 1955 are referred to atomic time standards and
|
|
* are not affected by errors in Lunar or planetary theory.
|
|
*/
|
|
static double
|
|
adjust_for_tidacc(double ans, double Y)
|
|
{
|
|
double B;
|
|
if (Y < 1955.0) {
|
|
B = (Y - 1955.0);
|
|
ans += -0.000091 * (tid_acc + 26.0) * B * B;
|
|
}
|
|
return ans;
|
|
}
|
|
|
|
/* returns tidal acceleration used in swe_deltat() */
|
|
double FAR PASCAL_CONV
|
|
swe_get_tid_acc()
|
|
{
|
|
#if 0
|
|
if (tid_acc == TID_ACC_DE403)
|
|
return 403;
|
|
if (tid_acc == TID_ACC_DE402)
|
|
return 200;
|
|
#endif
|
|
return tid_acc;
|
|
}
|
|
|
|
void FAR PASCAL_CONV
|
|
swe_set_tid_acc(double t_acc)
|
|
{
|
|
tid_acc = t_acc;
|
|
#if TRACE
|
|
swi_open_trace(NULL);
|
|
if (swi_trace_count < TRACE_COUNT_MAX) {
|
|
if (swi_fp_trace_c != NULL) {
|
|
fputs("\n/*SWE_SET_TID_ACC*/\n", swi_fp_trace_c);
|
|
fprintf(swi_fp_trace_c, " t = %.9f;\n", t_acc);
|
|
fprintf(swi_fp_trace_c, " swe_set_tid_acc(t);\n");
|
|
fputs(" printf(\"swe_set_tid_acc: %f\\t\\n\", ", swi_fp_trace_c);
|
|
fputs("t);\n", swi_fp_trace_c);
|
|
fflush(swi_fp_trace_c);
|
|
}
|
|
if (swi_fp_trace_out != NULL) {
|
|
fprintf(swi_fp_trace_out, "swe_set_tid_acc: %f\t\n", t_acc);
|
|
fflush(swi_fp_trace_out);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Apparent Sidereal Time at Greenwich with equation of the equinoxes
|
|
* AA page B6
|
|
*
|
|
* returns sidereal time in hours.
|
|
*
|
|
* Caution. At epoch J2000.0, the 16 decimal precision
|
|
* of IEEE double precision numbers
|
|
* limits time resolution measured by Julian date
|
|
* to approximately 24 microseconds.
|
|
*
|
|
* program returns sidereal hours since sidereal midnight
|
|
* tjd julian day UT
|
|
* eps obliquity of ecliptic, degrees
|
|
* nut nutation, degrees
|
|
*/
|
|
double FAR PASCAL_CONV
|
|
swe_sidtime0(double tjd, double eps, double nut)
|
|
{
|
|
double jd0; /* Julian day at midnight Universal Time */
|
|
double secs; /* Time of day, UT seconds since UT midnight */
|
|
double eqeq, jd, tu, tt, msday;
|
|
double gmst;
|
|
/* Julian day at given UT */
|
|
jd = tjd;
|
|
jd0 = floor(jd);
|
|
secs = tjd - jd0;
|
|
if (secs < 0.5) {
|
|
jd0 -= 0.5;
|
|
secs += 0.5;
|
|
}
|
|
else {
|
|
jd0 += 0.5;
|
|
secs -= 0.5;
|
|
}
|
|
secs *= 86400.0;
|
|
tu = (jd0 - J2000) / 36525.0; /* UT1 in centuries after J2000 */
|
|
if (PREC_IAU_2003) {
|
|
tt = (jd0 + swe_deltat(jd0) - J2000) / 36525.0; /* TT in centuries after J2000 */
|
|
gmst =
|
|
(((-0.000000002454 * tt - 0.00000199708) * tt -
|
|
0.0000002926) * tt + 0.092772110) * tt * tt +
|
|
307.4771013 * (tt - tu) + 8640184.79447825 * tu + 24110.5493771;
|
|
/* mean solar days per sidereal day at date tu;
|
|
* for the derivative of gmst, we can assume UT1 =~ TT */
|
|
msday =
|
|
1 +
|
|
((((-0.000000012270 * tt - 0.00000798832) * tt -
|
|
0.0000008778) * tt + 0.185544220) * tt +
|
|
8640184.79447825) / (86400. * 36525.);
|
|
}
|
|
else {
|
|
/* Greenwich Mean Sidereal Time at 0h UT of date */
|
|
gmst =
|
|
((-6.2e-6 * tu + 9.3104e-2) * tu + 8640184.812866) * tu +
|
|
24110.54841;
|
|
/* mean solar days per sidereal day at date tu, = 1.00273790934 in 1986 */
|
|
msday =
|
|
1.0 + ((-1.86e-5 * tu + 0.186208) * tu +
|
|
8640184.812866) / (86400. * 36525.);
|
|
}
|
|
/* Local apparent sidereal time at given UT at Greenwich */
|
|
eqeq = 240.0 * nut * cos(eps * DEGTORAD);
|
|
gmst = gmst + msday * secs + eqeq /* + 240.0*tlong */ ;
|
|
/* Sidereal seconds modulo 1 sidereal day */
|
|
gmst = gmst - 86400.0 * floor(gmst / 86400.0);
|
|
/* return in hours */
|
|
gmst /= 3600;
|
|
#ifdef TRACE
|
|
swi_open_trace(NULL);
|
|
if (swi_trace_count < TRACE_COUNT_MAX) {
|
|
if (swi_fp_trace_c != NULL) {
|
|
fputs("\n/*SWE_SIDTIME0*/\n", swi_fp_trace_c);
|
|
fprintf(swi_fp_trace_c, " tjd = %.9f;", tjd);
|
|
fprintf(swi_fp_trace_c, " eps = %.9f;", eps);
|
|
fprintf(swi_fp_trace_c, " nut = %.9f;\n", nut);
|
|
fprintf(swi_fp_trace_c, " t = swe_sidtime0(tjd, eps, nut);\n");
|
|
fputs
|
|
(" printf(\"swe_sidtime0: %f\\tsidt = %f\\teps = %f\\tnut = %f\\t\\n\", ",
|
|
swi_fp_trace_c);
|
|
fputs("tjd, t, eps, nut);\n", swi_fp_trace_c);
|
|
fflush(swi_fp_trace_c);
|
|
}
|
|
if (swi_fp_trace_out != NULL) {
|
|
fprintf(swi_fp_trace_out,
|
|
"swe_sidtime0: %f\tsidt = %f\teps = %f\tnut = %f\t\n",
|
|
tjd, gmst, eps, nut);
|
|
fflush(swi_fp_trace_out);
|
|
}
|
|
}
|
|
#endif
|
|
return gmst;
|
|
}
|
|
|
|
/* sidereal time, without eps and nut as parameters.
|
|
* tjd must be UT !!!
|
|
* for more informsation, see comment with swe_sidtime0()
|
|
*/
|
|
double FAR PASCAL_CONV
|
|
swe_sidtime(double tjd_ut)
|
|
{
|
|
int i;
|
|
double eps, nutlo[2], tsid;
|
|
double tjde = tjd_ut + swe_deltat(tjd_ut);
|
|
eps = swi_epsiln(tjde) * RADTODEG;
|
|
swi_nutation(tjde, nutlo);
|
|
for (i = 0; i < 2; i++)
|
|
nutlo[i] *= RADTODEG;
|
|
tsid = swe_sidtime0(tjd_ut, eps + nutlo[1], nutlo[0]);
|
|
#ifdef TRACE
|
|
swi_open_trace(NULL);
|
|
if (swi_trace_count < TRACE_COUNT_MAX) {
|
|
if (swi_fp_trace_c != NULL) {
|
|
fputs("\n/*SWE_SIDTIME*/\n", swi_fp_trace_c);
|
|
fprintf(swi_fp_trace_c, " tjd = %.9f;\n", tjd_ut);
|
|
fprintf(swi_fp_trace_c, " t = swe_sidtime(tjd);\n");
|
|
fputs(" printf(\"swe_sidtime: %f\\t%f\\t\\n\", ",
|
|
swi_fp_trace_c);
|
|
fputs("tjd, t);\n", swi_fp_trace_c);
|
|
fflush(swi_fp_trace_c);
|
|
}
|
|
if (swi_fp_trace_out != NULL) {
|
|
fprintf(swi_fp_trace_out, "swe_sidtime: %f\t%f\t\n", tjd_ut,
|
|
tsid);
|
|
fflush(swi_fp_trace_out);
|
|
}
|
|
}
|
|
#endif
|
|
return tsid;
|
|
}
|
|
|
|
/* SWISSEPH
|
|
* generates name of ephemeris file
|
|
* file name looks as follows:
|
|
* swephpl.m30, where
|
|
*
|
|
* "sweph" "swiss ephemeris"
|
|
* "pl","mo","as" planet, moon, or asteroid
|
|
* "m" or "_" BC or AD
|
|
*
|
|
* "30" start century
|
|
* tjd = ephemeris file for which julian day
|
|
* ipli = number of planet
|
|
* fname = ephemeris file name
|
|
*/
|
|
void
|
|
swi_gen_filename(double tjd, int ipli, char *fname)
|
|
{
|
|
int icty;
|
|
int ncties = (int)NCTIES;
|
|
short gregflag;
|
|
int jmon, jday, jyear, sgn;
|
|
double jut;
|
|
char *sform;
|
|
switch (ipli) {
|
|
case SEI_MOON:
|
|
strcpy(fname, "semo");
|
|
break;
|
|
case SEI_EMB:
|
|
case SEI_MERCURY:
|
|
case SEI_VENUS:
|
|
case SEI_MARS:
|
|
case SEI_JUPITER:
|
|
case SEI_SATURN:
|
|
case SEI_URANUS:
|
|
case SEI_NEPTUNE:
|
|
case SEI_PLUTO:
|
|
case SEI_SUNBARY:
|
|
strcpy(fname, "sepl");
|
|
break;
|
|
case SEI_CERES:
|
|
case SEI_PALLAS:
|
|
case SEI_JUNO:
|
|
case SEI_VESTA:
|
|
case SEI_CHIRON:
|
|
case SEI_PHOLUS:
|
|
strcpy(fname, "seas");
|
|
break;
|
|
default: /* asteroid */
|
|
sform = "ast%d%sse%05d.%s";
|
|
if (ipli - SE_AST_OFFSET > 99999)
|
|
sform = "ast%d%ss%06d.%s";
|
|
sprintf(fname, sform, (ipli - SE_AST_OFFSET) / 1000, DIR_GLUE,
|
|
ipli - SE_AST_OFFSET, SE_FILE_SUFFIX);
|
|
return; /* asteroids: only one file 3000 bc - 3000 ad */
|
|
/* break; */
|
|
}
|
|
/* century of tjd */
|
|
/* if tjd > 1600 then gregorian calendar */
|
|
if (tjd >= 2305447.5) {
|
|
gregflag = TRUE;
|
|
swe_revjul(tjd, gregflag, &jyear, &jmon, &jday, &jut);
|
|
/* else julian calendar */
|
|
}
|
|
else {
|
|
gregflag = FALSE;
|
|
swe_revjul(tjd, gregflag, &jyear, &jmon, &jday, &jut);
|
|
}
|
|
/* start century of file containing tjd */
|
|
if (jyear < 0)
|
|
sgn = -1;
|
|
else
|
|
sgn = 1;
|
|
icty = jyear / 100;
|
|
if (sgn < 0 && jyear % 100 != 0)
|
|
icty -= 1;
|
|
while (icty % ncties != 0)
|
|
icty--;
|
|
#if 0
|
|
if (icty < BEG_YEAR / 100)
|
|
icty = BEG_YEAR / 100;
|
|
if (icty >= END_YEAR / 100)
|
|
icty = END_YEAR / 100 - ncties;
|
|
#endif
|
|
/* B.C. or A.D. */
|
|
if (icty < 0)
|
|
strcat(fname, "m");
|
|
else
|
|
strcat(fname, "_");
|
|
icty = abs(icty);
|
|
sprintf(fname + strlen(fname), "%02d.%s", icty, SE_FILE_SUFFIX);
|
|
#if 0
|
|
printf("fname %s\n", fname);
|
|
fflush(stdout);
|
|
#endif
|
|
}
|
|
|
|
/**************************************************************
|
|
cut the string s at any char in cutlist; put pointers to partial strings
|
|
into cpos[0..n-1], return number of partial strings;
|
|
if less than nmax fields are found, the first empty pointer is
|
|
set to NULL.
|
|
More than one character of cutlist in direct sequence count as one
|
|
separator only! cut_str_any("word,,,word2",","..) cuts only two parts,
|
|
cpos[0] = "word" and cpos[1] = "word2".
|
|
If more than nmax fields are found, nmax is returned and the
|
|
last field nmax-1 rmains un-cut.
|
|
**************************************************************/
|
|
int
|
|
swi_cutstr(char *s, char *cutlist, char *cpos[], int nmax)
|
|
{
|
|
int n = 1;
|
|
cpos[0] = s;
|
|
while (*s != '\0') {
|
|
if ((strchr(cutlist, (int)*s) != NULL) && n < nmax) {
|
|
*s = '\0';
|
|
while (*(s + 1) != '\0' && strchr(cutlist, (int)*(s + 1)) != NULL)
|
|
s++;
|
|
cpos[n++] = s + 1;
|
|
}
|
|
if (*s == '\n' || *s == '\r') { /* treat nl or cr like end of string */
|
|
*s = '\0';
|
|
break;
|
|
}
|
|
s++;
|
|
}
|
|
if (n < nmax)
|
|
cpos[n] = NULL;
|
|
return (n);
|
|
} /* cutstr */
|
|
|
|
char *
|
|
swi_right_trim(char *s)
|
|
{
|
|
char *sp = s + strlen(s) - 1;
|
|
while (isspace((int)(unsigned char)*sp) && sp >= s)
|
|
*sp-- = '\0';
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* The following C code (by Rob Warnock rpw3@sgi.com) does CRC-32 in
|
|
* BigEndian/BigEndian byte/bit order. That is, the data is sent most
|
|
* significant byte first, and each of the bits within a byte is sent most
|
|
* significant bit first, as in FDDI. You will need to twiddle with it to do
|
|
* Ethernet CRC, i.e., BigEndian/LittleEndian byte/bit order.
|
|
*
|
|
* The CRCs this code generates agree with the vendor-supplied Verilog models
|
|
* of several of the popular FDDI "MAC" chips.
|
|
*/
|
|
static uint32 crc32_table[256];
|
|
|
|
/* Initialized first time "crc32()" is called. If you prefer, you can
|
|
* statically initialize it at compile time. [Another exercise.]
|
|
*/
|
|
|
|
uint32
|
|
swi_crc32(unsigned char *buf, int len)
|
|
{
|
|
unsigned char *p;
|
|
uint32 crc;
|
|
if (!crc32_table[1]) /* if not already done, */
|
|
init_crc32(); /* build table */
|
|
crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
|
|
for (p = buf; len > 0; ++p, --len)
|
|
crc = (crc << 8) ^ crc32_table[(crc >> 24) ^ *p];
|
|
return ~crc; /* transmit complement, per CRC-32 spec */
|
|
}
|
|
|
|
/*
|
|
* Build auxiliary table for parallel byte-at-a-time CRC-32.
|
|
*/
|
|
#define CRC32_POLY 0x04c11db7 /* AUTODIN II, Ethernet, & FDDI */
|
|
|
|
static void
|
|
init_crc32(void)
|
|
{
|
|
int32 i, j;
|
|
uint32 c;
|
|
for (i = 0; i < 256; ++i) {
|
|
for (c = i << 24, j = 8; j > 0; --j)
|
|
c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY : (c << 1);
|
|
crc32_table[i] = c;
|
|
}
|
|
}
|
|
|
|
/*******************************************************
|
|
* other functions from swephlib.c;
|
|
* they are not needed for Swiss Ephemeris,
|
|
* but may be useful to former Placalc users.
|
|
********************************************************/
|
|
|
|
/************************************
|
|
normalize argument into interval [0..DEG360]
|
|
*************************************/
|
|
centisec FAR PASCAL_CONV
|
|
swe_csnorm(centisec p)
|
|
{
|
|
if (p < 0)
|
|
do {
|
|
p += DEG360;
|
|
} while (p < 0);
|
|
else if (p >= DEG360)
|
|
do {
|
|
p -= DEG360;
|
|
} while (p >= DEG360);
|
|
return (p);
|
|
}
|
|
|
|
/************************************
|
|
distance in centisecs p1 - p2
|
|
normalized to [0..360[
|
|
**************************************/
|
|
centisec FAR PASCAL_CONV
|
|
swe_difcsn(centisec p1, centisec p2)
|
|
{
|
|
return (swe_csnorm(p1 - p2));
|
|
}
|
|
|
|
double FAR PASCAL_CONV
|
|
swe_difdegn(double p1, double p2)
|
|
{
|
|
return (swe_degnorm(p1 - p2));
|
|
}
|
|
|
|
/************************************
|
|
distance in centisecs p1 - p2
|
|
normalized to [-180..180[
|
|
**************************************/
|
|
centisec FAR PASCAL_CONV
|
|
swe_difcs2n(centisec p1, centisec p2)
|
|
{
|
|
centisec dif;
|
|
dif = swe_csnorm(p1 - p2);
|
|
if (dif >= DEG180)
|
|
return (dif - DEG360);
|
|
return (dif);
|
|
}
|
|
|
|
double FAR PASCAL_CONV
|
|
swe_difdeg2n(double p1, double p2)
|
|
{
|
|
double dif;
|
|
dif = swe_degnorm(p1 - p2);
|
|
if (dif >= 180.0)
|
|
return (dif - 360.0);
|
|
return (dif);
|
|
}
|
|
|
|
double FAR PASCAL_CONV
|
|
swe_difrad2n(double p1, double p2)
|
|
{
|
|
double dif;
|
|
dif = swe_radnorm(p1 - p2);
|
|
if (dif >= TWOPI / 2)
|
|
return (dif - TWOPI);
|
|
return (dif);
|
|
}
|
|
|
|
/*************************************
|
|
round second, but at 29.5959 always down
|
|
*************************************/
|
|
centisec FAR PASCAL_CONV
|
|
swe_csroundsec(centisec x)
|
|
{
|
|
centisec t;
|
|
t = (x + 50) / 100 * 100L; /* round to seconds */
|
|
if (t > x && t % DEG30 == 0) /* was rounded up to next sign */
|
|
t = x / 100 * 100L; /* round last second of sign downwards */
|
|
return (t);
|
|
}
|
|
|
|
/*************************************
|
|
double to int32 with rounding, no overflow check
|
|
*************************************/
|
|
int32 FAR PASCAL_CONV
|
|
swe_d2l(double x)
|
|
{
|
|
if (x >= 0)
|
|
return ((int32) (x + 0.5));
|
|
else
|
|
return (-(int32) (0.5 - x));
|
|
}
|
|
|
|
/*
|
|
* monday = 0, ... sunday = 6
|
|
*/
|
|
int FAR PASCAL_CONV
|
|
swe_day_of_week(double jd)
|
|
{
|
|
return (((int)floor(jd - 2433282 - 1.5) % 7) + 7) % 7;
|
|
}
|
|
|
|
char *FAR PASCAL_CONV
|
|
swe_cs2timestr(CSEC t, int sep, AS_BOOL suppressZero, char *a)
|
|
|
|
/* does not suppress zeros in hours or minutes */
|
|
{
|
|
/* static char a[9]; */
|
|
centisec h, m, s;
|
|
strcpy(a, " ");
|
|
a[2] = a[5] = sep;
|
|
t = ((t + 50) / 100) % (24L * 3600L); /* round to seconds */
|
|
s = t % 60L;
|
|
m = (t / 60) % 60L;
|
|
h = t / 3600 % 100L;
|
|
if (s == 0 && suppressZero)
|
|
a[5] = '\0';
|
|
else {
|
|
a[6] = (char)(s / 10 + '0');
|
|
a[7] = (char)(s % 10 + '0');
|
|
};
|
|
a[0] = (char)(h / 10 + '0');
|
|
a[1] = (char)(h % 10 + '0');
|
|
a[3] = (char)(m / 10 + '0');
|
|
a[4] = (char)(m % 10 + '0');
|
|
return (a);
|
|
} /* swe_cs2timestr() */
|
|
|
|
char *FAR PASCAL_CONV
|
|
swe_cs2lonlatstr(CSEC t, char pchar, char mchar, char *sp)
|
|
{
|
|
char a[10]; /* must be initialized at each call */
|
|
char *aa;
|
|
centisec h, m, s;
|
|
strcpy(a, " ' ");
|
|
/* mask dddEmm'ss" */
|
|
if (t < 0)
|
|
pchar = mchar;
|
|
t = (ABS4(t) + 50) / 100; /* round to seconds */
|
|
s = t % 60L;
|
|
m = t / 60 % 60L;
|
|
h = t / 3600 % 1000L;
|
|
if (s == 0)
|
|
a[6] = '\0'; /* cut off seconds */
|
|
else {
|
|
a[7] = (char)(s / 10 + '0');
|
|
a[8] = (char)(s % 10 + '0');
|
|
}
|
|
a[3] = pchar;
|
|
if (h > 99)
|
|
a[0] = (char)(h / 100 + '0');
|
|
if (h > 9)
|
|
a[1] = (char)(h % 100 / 10 + '0');
|
|
a[2] = (char)(h % 10 + '0');
|
|
a[4] = (char)(m / 10 + '0');
|
|
a[5] = (char)(m % 10 + '0');
|
|
aa = a;
|
|
while (*aa == ' ')
|
|
aa++;
|
|
strcpy(sp, aa);
|
|
return (sp);
|
|
} /* swe_cs2lonlatstr() */
|
|
|
|
char *FAR PASCAL_CONV
|
|
swe_cs2degstr(CSEC t, char *a)
|
|
/* does suppress leading zeros in degrees */
|
|
{
|
|
/* char a[9]; must be initialized at each call */
|
|
centisec h, m, s;
|
|
t = t / 100 % (30L * 3600L); /* truncate to seconds */
|
|
s = t % 60L;
|
|
m = t / 60 % 60L;
|
|
h = t / 3600 % 100L; /* only 0..99 degrees */
|
|
sprintf(a, "%2d%s%02d'%02d", h, ODEGREE_STRING, m, s);
|
|
return (a);
|
|
} /* swe_cs2degstr() */
|
|
|
|
/*********************************************************
|
|
* function for splitting centiseconds into *
|
|
* ideg degrees,
|
|
* imin minutes,
|
|
* isec seconds,
|
|
* dsecfr fraction of seconds
|
|
* isgn zodiac sign number;
|
|
* or +/- sign
|
|
*
|
|
*********************************************************/
|
|
void FAR PASCAL_CONV
|
|
swe_split_deg(double ddeg, int32 roundflag, int32 * ideg, int32 * imin,
|
|
int32 * isec, double *dsecfr, int32 * isgn)
|
|
{
|
|
double dadd = 0;
|
|
*isgn = 1;
|
|
if (ddeg < 0) {
|
|
*isgn = -1;
|
|
ddeg = -ddeg;
|
|
}
|
|
if (roundflag & SE_SPLIT_DEG_ROUND_DEG) {
|
|
dadd = 0.5;
|
|
}
|
|
else if (roundflag & SE_SPLIT_DEG_ROUND_MIN) {
|
|
dadd = 0.5 / 60;
|
|
}
|
|
else if (roundflag & SE_SPLIT_DEG_ROUND_SEC) {
|
|
dadd = 0.5 / 3600;
|
|
}
|
|
if (roundflag & SE_SPLIT_DEG_KEEP_DEG) {
|
|
if ((int32) (ddeg + dadd) - (int32) ddeg > 0)
|
|
dadd = 0;
|
|
}
|
|
else if (roundflag & SE_SPLIT_DEG_KEEP_SIGN) {
|
|
if (fmod(ddeg, 30) + dadd >= 30)
|
|
dadd = 0;
|
|
}
|
|
ddeg += dadd;
|
|
if (roundflag & SE_SPLIT_DEG_ZODIACAL) {
|
|
*isgn = (int32) (ddeg / 30);
|
|
ddeg = fmod(ddeg, 30);
|
|
}
|
|
*ideg = (int32) ddeg;
|
|
ddeg -= *ideg;
|
|
*imin = (int32) (ddeg * 60);
|
|
ddeg -= *imin / 60.0;
|
|
*isec = (int32) (ddeg * 3600);
|
|
if (!
|
|
(roundflag &
|
|
(SE_SPLIT_DEG_ROUND_DEG | SE_SPLIT_DEG_ROUND_MIN |
|
|
SE_SPLIT_DEG_ROUND_SEC))) {
|
|
*dsecfr = ddeg * 3600 - *isec;
|
|
}
|
|
} /* end split_deg */
|
|
|
|
double
|
|
swi_kepler(double E, double M, double ecce)
|
|
{
|
|
double dE = 1, E0;
|
|
double x;
|
|
/* simple formula for small eccentricities */
|
|
if (ecce < 0.4) {
|
|
while (dE > 1e-12) {
|
|
E0 = E;
|
|
E = M + ecce * sin(E0);
|
|
dE = fabs(E - E0);
|
|
}
|
|
/* complicated formula for high eccentricities */
|
|
}
|
|
else {
|
|
while (dE > 1e-12) {
|
|
E0 = E;
|
|
/*
|
|
* Alois 21-jul-2000: workaround an optimizer problem in gcc
|
|
* swi_mod2PI sees very small negative argument e-322 and returns +2PI;
|
|
* we avoid swi_mod2PI for small x.
|
|
*/
|
|
x = (M + ecce * sin(E0) - E0) / (1 - ecce * cos(E0));
|
|
dE = fabs(x);
|
|
if (dE < 1e-2) {
|
|
E = E0 + x;
|
|
}
|
|
else {
|
|
E = swi_mod2PI(E0 + x);
|
|
dE = fabs(E - E0);
|
|
}
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
|
|
void
|
|
swi_FK4_FK5(double *xp, double tjd)
|
|
{
|
|
if (xp[0] == 0 && xp[1] == 0 && xp[2] == 0)
|
|
return;
|
|
swi_cartpol(xp, xp);
|
|
/* according to Expl.Suppl., p. 167f. */
|
|
xp[0] +=
|
|
(0.035 +
|
|
0.085 * (tjd - B1950) / 36524.2198782) / 3600 * 15 * DEGTORAD;
|
|
xp[3] += (0.085 / 36524.2198782) / 3600 * 15 * DEGTORAD;
|
|
swi_polcart(xp, xp);
|
|
}
|
|
|
|
void
|
|
swi_FK5_FK4(double *xp, double tjd)
|
|
{
|
|
if (xp[0] == 0 && xp[1] == 0 && xp[2] == 0)
|
|
return;
|
|
swi_cartpol(xp, xp);
|
|
/* according to Expl.Suppl., p. 167f. */
|
|
xp[0] -=
|
|
(0.035 +
|
|
0.085 * (tjd - B1950) / 36524.2198782) / 3600 * 15 * DEGTORAD;
|
|
xp[3] -= (0.085 / 36524.2198782) / 3600 * 15 * DEGTORAD;
|
|
swi_polcart(xp, xp);
|
|
}
|
|
|
|
char *
|
|
swi_strcpy(char *to, char *from)
|
|
{
|
|
char *s;
|
|
if (*from == '\0') {
|
|
*to = '\0';
|
|
return to;
|
|
}
|
|
s = strdup(from);
|
|
if (s == NULL) {
|
|
strcpy(to, from);
|
|
return to;
|
|
}
|
|
strcpy(to, s);
|
|
free(s);
|
|
return to;
|
|
}
|
|
|
|
char *
|
|
swi_strncpy(char *to, char *from, size_t n)
|
|
{
|
|
char *s;
|
|
if (*from == '\0') {
|
|
return to;
|
|
}
|
|
s = strdup(from);
|
|
if (s == NULL) {
|
|
strncpy(to, from, n);
|
|
return to;
|
|
}
|
|
strncpy(to, s, n);
|
|
free(s);
|
|
return to;
|
|
}
|
|
|
|
#ifdef TRACE
|
|
void
|
|
swi_open_trace(char *serr)
|
|
{
|
|
swi_trace_count++;
|
|
if (swi_trace_count >= TRACE_COUNT_MAX) {
|
|
if (swi_trace_count == TRACE_COUNT_MAX) {
|
|
if (serr != NULL)
|
|
sprintf(serr, "trace stopped, %d calls exceeded.",
|
|
TRACE_COUNT_MAX);
|
|
if (swi_fp_trace_out != NULL)
|
|
fprintf(swi_fp_trace_out,
|
|
"trace stopped, %d calls exceeded.\n",
|
|
TRACE_COUNT_MAX);
|
|
if (swi_fp_trace_c != NULL)
|
|
fprintf(swi_fp_trace_c,
|
|
"/* trace stopped, %d calls exceeded. */\n",
|
|
TRACE_COUNT_MAX);
|
|
}
|
|
return;
|
|
}
|
|
if (swi_fp_trace_c == NULL) {
|
|
char fname[AS_MAXCH];
|
|
#if TRACE == 2
|
|
char *sp, *sp1;
|
|
int ipid;
|
|
#endif
|
|
/* remove(fname_trace_c); */
|
|
strcpy(fname, fname_trace_c);
|
|
#if TRACE == 2
|
|
sp = strchr(fname_trace_c, '.');
|
|
sp1 = strchr(fname, '.');
|
|
#if MSDOS
|
|
ipid = _getpid();
|
|
#else
|
|
ipid = getpid();
|
|
#endif
|
|
sprintf(sp1, "_%d%s", ipid, sp);
|
|
#endif
|
|
if ((swi_fp_trace_c = fopen(fname, FILE_A_ACCESS)) == NULL) {
|
|
if (serr != NULL)
|
|
sprintf(serr, "could not open trace output file '%s'", fname);
|
|
}
|
|
else {
|
|
fputs("#include \"sweodef.h\"\n", swi_fp_trace_c);
|
|
fputs("#include \"swephexp.h\"\n\n", swi_fp_trace_c);
|
|
fputs("void main()\n{\n", swi_fp_trace_c);
|
|
fputs
|
|
(" double tjd, t, nut, eps; int i, ipl, retc; int32 iflag;\n",
|
|
swi_fp_trace_c);
|
|
fputs(" double armc, geolat, cusp[12], ascmc[10]; int hsys;\n",
|
|
swi_fp_trace_c);
|
|
fputs(" double xx[6]; int32 iflgret;\n", swi_fp_trace_c);
|
|
fputs(" char s[AS_MAXCH], star[AS_MAXCH], serr[AS_MAXCH];\n",
|
|
swi_fp_trace_c);
|
|
fflush(swi_fp_trace_c);
|
|
}
|
|
}
|
|
if (swi_fp_trace_out == NULL) {
|
|
char fname[AS_MAXCH];
|
|
#if TRACE == 2
|
|
char *sp, *sp1;
|
|
int ipid;
|
|
#endif
|
|
/* remove(fname_trace_out); */
|
|
strcpy(fname, fname_trace_out);
|
|
#if TRACE == 2
|
|
sp = strchr(fname_trace_out, '.');
|
|
sp1 = strchr(fname, '.');
|
|
#if MSDOS
|
|
ipid = _getpid();
|
|
#else
|
|
ipid = getpid();
|
|
#endif
|
|
sprintf(sp1, "_%d%s", ipid, sp);
|
|
#endif
|
|
if ((swi_fp_trace_out = fopen(fname, FILE_A_ACCESS)) == NULL) {
|
|
if (serr != NULL)
|
|
sprintf(serr, "could not open trace output file '%s'", fname);
|
|
}
|
|
}
|
|
}
|
|
#endif
|