The SSH host key has changed on 8 April, 2022 to this one: SHA256:573uTBSeh74kvOo0HJXi5ijdzRm8me27suzNEDlGyrQ

Remove the bundled Swiss Ephemeris library

main
Gergely Polonkai 1 year ago
parent aadf4a280e
commit e03ed37133
No known key found for this signature in database
GPG Key ID: 2D2885533B869ED4
  1. 2
      Makefile.am
  2. 6
      configure.ac
  3. 72
      data/Makefile.am
  4. BIN
      data/sweph-data/s136199.se1
  5. BIN
      data/sweph-data/s136199s.se1
  6. BIN
      data/sweph-data/se00010s.se1
  7. BIN
      data/sweph-data/se00034s.se1
  8. BIN
      data/sweph-data/se00157s.se1
  9. BIN
      data/sweph-data/se07066s.se1
  10. BIN
      data/sweph-data/se08405s.se1
  11. BIN
      data/sweph-data/se10199s.se1
  12. BIN
      data/sweph-data/se90377.se1
  13. BIN
      data/sweph-data/se90377s.se1
  14. BIN
      data/sweph-data/se90482.se1
  15. BIN
      data/sweph-data/se90482s.se1
  16. BIN
      data/sweph-data/seas_00.se1
  17. BIN
      data/sweph-data/seas_06.se1
  18. BIN
      data/sweph-data/seas_12.se1
  19. BIN
      data/sweph-data/seas_18.se1
  20. BIN
      data/sweph-data/seas_24.se1
  21. BIN
      data/sweph-data/seas_30.se1
  22. BIN
      data/sweph-data/seas_36.se1
  23. BIN
      data/sweph-data/seas_42.se1
  24. BIN
      data/sweph-data/seas_48.se1
  25. BIN
      data/sweph-data/seasm06.se1
  26. BIN
      data/sweph-data/seasm12.se1
  27. BIN
      data/sweph-data/seasm18.se1
  28. BIN
      data/sweph-data/seasm24.se1
  29. BIN
      data/sweph-data/seasm30.se1
  30. BIN
      data/sweph-data/seasm36.se1
  31. BIN
      data/sweph-data/seasm42.se1
  32. BIN
      data/sweph-data/seasm48.se1
  33. BIN
      data/sweph-data/seasm54.se1
  34. 393347
      data/sweph-data/seasnam.txt
  35. 31
      data/sweph-data/seleapsec.txt
  36. BIN
      data/sweph-data/semo_00.se1
  37. BIN
      data/sweph-data/semo_06.se1
  38. BIN
      data/sweph-data/semo_12.se1
  39. BIN
      data/sweph-data/semo_18.se1
  40. BIN
      data/sweph-data/semo_24.se1
  41. BIN
      data/sweph-data/semo_30.se1
  42. BIN
      data/sweph-data/semo_36.se1
  43. BIN
      data/sweph-data/semo_42.se1
  44. BIN
      data/sweph-data/semo_48.se1
  45. BIN
      data/sweph-data/semom06.se1
  46. BIN
      data/sweph-data/semom12.se1
  47. BIN
      data/sweph-data/semom18.se1
  48. BIN
      data/sweph-data/semom24.se1
  49. BIN
      data/sweph-data/semom30.se1
  50. BIN
      data/sweph-data/semom36.se1
  51. BIN
      data/sweph-data/semom42.se1
  52. BIN
      data/sweph-data/semom48.se1
  53. BIN
      data/sweph-data/semom54.se1
  54. 76
      data/sweph-data/seorbel.txt
  55. BIN
      data/sweph-data/sepl_00.se1
  56. BIN
      data/sweph-data/sepl_06.se1
  57. BIN
      data/sweph-data/sepl_12.se1
  58. BIN
      data/sweph-data/sepl_18.se1
  59. BIN
      data/sweph-data/sepl_24.se1
  60. BIN
      data/sweph-data/sepl_30.se1
  61. BIN
      data/sweph-data/sepl_36.se1
  62. BIN
      data/sweph-data/sepl_42.se1
  63. BIN
      data/sweph-data/sepl_48.se1
  64. BIN
      data/sweph-data/seplm06.se1
  65. BIN
      data/sweph-data/seplm12.se1
  66. BIN
      data/sweph-data/seplm18.se1
  67. BIN
      data/sweph-data/seplm24.se1
  68. BIN
      data/sweph-data/seplm30.se1
  69. BIN
      data/sweph-data/seplm36.se1
  70. BIN
      data/sweph-data/seplm42.se1
  71. BIN
      data/sweph-data/seplm48.se1
  72. BIN
      data/sweph-data/seplm54.se1
  73. 2
      docs/reference/swe-glib/Makefile.am
  74. 3
      src/Makefile.am
  75. 4
      src/gswe-moment.c
  76. 2
      src/gswe-timestamp.c
  77. 2
      src/swe-glib.c
  78. 1
      swe/Makefile.am
  79. 5
      swe/README
  80. 1
      swe/doc/Makefile.am
  81. BIN
      swe/doc/swephprg.pdf
  82. BIN
      swe/doc/swisseph.pdf
  83. 54
      swe/src/LICENSE
  84. 25
      swe/src/Makefile.am
  85. 6
      swe/src/README
  86. 1258
      swe/src/fixstars.cat
  87. 13
      swe/src/sedeltat.txt.inactive
  88. 1290
      swe/src/sefstars.txt
  89. 76
      swe/src/seorbel.txt
  90. 5410
      swe/src/swecl.c
  91. 592
      swe/src/swedate.c
  92. 82
      swe/src/swedate.h
  93. 535
      swe/src/swedll.h
  94. 3369
      swe/src/swehel.c
  95. 1823
      swe/src/swehouse.c
  96. 85
      swe/src/swehouse.h
  97. 931
      swe/src/swejpl.c
  98. 104
      swe/src/swejpl.h
  99. 131
      swe/src/swemini.c
  100. 1931
      swe/src/swemmoon.c
  101. Some files were not shown because too many files have changed in this diff Show More

@ -1,7 +1,7 @@
include $(top_srcdir)/swe-glib.mk
ACLOCAL_AMFLAGS = -I m4
SUBDIRS = swe swe/src swe/doc src po data tests
SUBDIRS = src po data tests
if ENABLE_GTK_DOC
SUBDIRS += docs/reference/swe-glib

@ -160,17 +160,11 @@ PKG_CHECK_MODULES([GIO], [gio-2.0 >= 2.26])
GLIB_GSETTINGS
AC_CONFIG_MACRO_DIR([m4])
LIBSWE_LIBS='$(top_builddir)/swe/src/libswe-$(SWE_VERSION).la'
AC_SUBST(LIBSWE_LIBS)
LIBSWE_GLIB_LIBS='$(top_builddir)/src/libswe-glib-$(SWE_GLIB_API_VERSION).la'
AC_SUBST(LIBSWE_GLIB_LIBS)
AC_CONFIG_FILES([
Makefile
swe/Makefile
swe/src/Makefile
swe/doc/Makefile
src/Makefile
data/Makefile
po/Makefile.in

@ -9,79 +9,7 @@ gsettings_SCHEMAS = eu.polonkai.gergely.swe-glib.gschema.xml
@GSETTINGS_RULES@
swephdir = $(pkgdatadir)
sweph_DATA = \
sweph-data/seas_00.se1 \
sweph-data/seas_06.se1 \
sweph-data/seas_12.se1 \
sweph-data/seas_18.se1 \
sweph-data/seas_24.se1 \
sweph-data/seas_30.se1 \
sweph-data/seas_36.se1 \
sweph-data/seas_42.se1 \
sweph-data/seas_48.se1 \
sweph-data/seasm06.se1 \
sweph-data/seasm12.se1 \
sweph-data/seasm18.se1 \
sweph-data/seasm24.se1 \
sweph-data/seasm30.se1 \
sweph-data/seasm36.se1 \
sweph-data/seasm42.se1 \
sweph-data/seasm48.se1 \
sweph-data/seasm54.se1 \
sweph-data/semo_00.se1 \
sweph-data/semo_06.se1 \
sweph-data/semo_12.se1 \
sweph-data/semo_18.se1 \
sweph-data/semo_24.se1 \
sweph-data/semo_30.se1 \
sweph-data/semo_36.se1 \
sweph-data/semo_42.se1 \
sweph-data/semo_48.se1 \
sweph-data/semom06.se1 \
sweph-data/semom12.se1 \
sweph-data/semom18.se1 \
sweph-data/semom24.se1 \
sweph-data/semom30.se1 \
sweph-data/semom36.se1 \
sweph-data/semom42.se1 \
sweph-data/semom48.se1 \
sweph-data/semom54.se1 \
sweph-data/sepl_00.se1 \
sweph-data/sepl_06.se1 \
sweph-data/sepl_12.se1 \
sweph-data/sepl_18.se1 \
sweph-data/sepl_24.se1 \
sweph-data/sepl_30.se1 \
sweph-data/sepl_36.se1 \
sweph-data/sepl_42.se1 \
sweph-data/sepl_48.se1 \
sweph-data/seplm06.se1 \
sweph-data/seplm12.se1 \
sweph-data/seplm18.se1 \
sweph-data/seplm24.se1 \
sweph-data/seplm30.se1 \
sweph-data/seplm36.se1 \
sweph-data/seplm42.se1 \
sweph-data/seplm48.se1 \
sweph-data/seplm54.se1 \
sweph-data/seleapsec.txt \
sweph-data/s136199.se1 \
sweph-data/s136199s.se1 \
sweph-data/se00010s.se1 \
sweph-data/se00034s.se1 \
sweph-data/se00157s.se1 \
sweph-data/se07066s.se1 \
sweph-data/se08405s.se1 \
sweph-data/se10199s.se1 \
sweph-data/se90377.se1 \
sweph-data/se90377s.se1 \
sweph-data/se90482.se1 \
sweph-data/se90482s.se1 \
$(NULL)
EXTRA_DIST = \
$(sweph_DATA) \
swe-glib.spec \
gschema.template

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

@ -1,31 +0,0 @@
# This file contains the dates of leap seconds to be taken into account
# by the Swiss Ephemeris.
# For each new leap second add the date of its insertion in the format
# yyyymmdd, e.g. "20081231" for 21 december 2008
19720630
19721231
19731231
19741231
19751231
19761231
19771231
19781231
19791231
19810630
19820630
19830630
19850630
19871231
19891231
19901231
19920630
19930630
19949630
19951231
19970630
19981231
20051231
20081231
20120630
20150630
20161231

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

@ -1,76 +0,0 @@
# Orbital elements of ficticious planets
# 27 Jan. 2000
#
# This file is part of the Swiss Ephemeris, from Version 1.52 on.
#
# Warning! These planets do not exist!
#
# The user can add his or her own elements.
# 960 is the maximum number of ficticious planets.
#
# The elements order is as follows:
# 1. epoch of elements (Julian day)
# 2. equinox (Julian day or "J1900" or "B1950" or "J2000")
# 3. mean anomaly at epoch
# 4. semi-axis
# 5. eccentricity
# 6. argument of perihelion (ang. distance of perihelion from node)
# 7. ascending node
# 8. inclination
# 9. name of planet
#
# use '#' for comments
# to compute a body with swe_calc(), use planet number
# ipl = SE_FICT_OFFSET_1 + number_of_elements_set,
# e.g. number of Kronos is ipl = 39 + 4 = 43
#
# Witte/Sieggruen planets, refined by James Neely
J1900, J1900, 163.7409, 40.99837, 0.00460, 171.4333, 129.8325, 1.0833, Cupido # 1
J1900, J1900, 27.6496, 50.66744, 0.00245, 148.1796, 161.3339, 1.0500, Hades # 2
J1900, J1900, 165.1232, 59.21436, 0.00120, 299.0440, 0.0000, 0.0000, Zeus # 3
J1900, J1900, 169.0193, 64.81690, 0.00305, 208.8801, 0.0000, 0.0000, Kronos # 4
J1900, J1900, 138.0533, 70.29949, 0.00000, 0.0000, 0.0000, 0.0000, Apollon # 5
J1900, J1900, 351.3350, 73.62765, 0.00000, 0.0000, 0.0000, 0.0000, Admetos # 6
J1900, J1900, 55.8983, 77.25568, 0.00000, 0.0000, 0.0000, 0.0000, Vulcanus # 7
J1900, J1900, 165.5163, 83.66907, 0.00000, 0.0000, 0.0000, 0.0000, Poseidon # 8
#
# Isis-Transpluto; elements from "Die Sterne" 3/1952, p. 70ff.
# Strubell does not give an equinox. 1945 is taken in order to
# reproduce the as best as ASTRON ephemeris. (This is a strange
# choice, though.)
# The epoch according to Strubell is 1772.76.
# 1772 is a leap year!
# The fraction is counted from 1 Jan. 1772
2368547.66, 2431456.5, 0.0, 77.775, 0.3, 0.7, 0, 0, Isis-Transpluto # 9
# Nibiru, elements from Christian Woeltge, Hannover
1856113.380954, 1856113.380954, 0.0, 234.8921, 0.981092, 103.966, -44.567, 158.708, Nibiru # 10
# Harrington, elements from Astronomical Journal 96(4), Oct. 1988
2374696.5, J2000, 0.0, 101.2, 0.411, 208.5, 275.4, 32.4, Harrington # 11
# according to W.G. Hoyt, "Planets X and Pluto", Tucson 1980, p. 63
2395662.5, 2395662.5, 34.05, 36.15, 0.10761, 284.75, 0, 0, Leverrier (Neptune) # 12
2395662.5, 2395662.5, 24.28, 37.25, 0.12062, 299.11, 0, 0, Adams (Neptune) # 13
2425977.5, 2425977.5, 281, 43.0, 0.202, 204.9, 0, 0, Lowell (Pluto) # 14
2425977.5, 2425977.5, 48.95, 55.1, 0.31, 280.1, 100, 15, Pickering (Pluto) # 15
# intramercurian hypothetical Vulcan acc. to L.H. Weston
J1900,JDATE, 252.8987988 + 707550.7341 * T, 0.13744, 0.019, 322.212069+1670.056*T, 47.787931-1670.056*T, 7.5, Vulcan # 16
# Selena/White Moon
J2000,JDATE, 242.2205555 + 5143.5418158 * T, 0.05280098949, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17
# Hypothetical planet Proserpina, according to http://www.geocities.com/Hollywood/Academy/7519/proserpina.html
# J1900, 170.73 + 51.05 * T
J1900,JDATE, 170.73, 79.225630, 0, 0, 0, 0, Proserpina #18
# Waldemath's Second Earth Moon
# Elements were derived by D.Koch from Waldemaths original elements as given in
# David Walters' book on Vulcan. They differ from Solar Fire (Graham Dawsons)
# elements, which are based on the assumption that the "mean longitude" given
# by Waldemath is an observation (a true longitude)
# Neither Swisseph nor Solar fire elements agree with Delphine Jay's ephemeris,
# which is obviously wrong.
2414290.95827875,2414290.95827875, 70.3407215 + 109023.2634989 * T, 0.0068400705250028, 0.1587, 8.14049594 + 2393.47417444 * T, 136.24878256 - 1131.71719709 * T, 2.5, Waldemath, geo # 19
#
# The following elements are for test only
# (Selena without T)
J2000,JDATE, 242.2205555, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17
# (Selena with T, gives exactly the same position)
J2000,JDATE, 242.2205555 + 5143.5418158 * T, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon with T Terms, geo # 17
J2000, JDATE, 174.794787 + 149472.5157715 * T, 0.38709831, 0.20563175 + 0.000020406 * T, 29.125226 + 0.3702885 * T, 48.330893 + 1.186189 * T, 7.004986 + 0.0018215 * T, Mercury elem. for equ. of date # 18
J2000, J2000, 174.794787 + 149472.5157715 * T, 0.38709831, 0.20563175 + 0.000020406 * T, 29.125226 + 0.2842872 * T, 48.330893 - 0.1254229 * T, 7.004986 - 0.0059516 * T, Mercury Test J2000 Elements# 18

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

@ -92,7 +92,7 @@ expand_content_files=
# e.g. GTKDOC_CFLAGS=-I$(top_srcdir) -I$(top_builddir) $(GTK_DEBUG_FLAGS)
# e.g. GTKDOC_LIBS=$(top_builddir)/gtk/$(gtktargetlib)
GTKDOC_CFLAGS=
GTKDOC_LIBS=$(LIBSWE_GLIB_LIBS) $(NULL)
GTKDOC_LIBS=$(LIBSWE_GLIB_LIBS) -lswe -ldl $(NULL)
# This includes the standard gtk-doc make rules, copied by gtkdocize.
include $(top_srcdir)/gtk-doc.make

@ -64,7 +64,7 @@ libswe_glib_2_0_la_SOURCES = \
$(NULL)
libswe_glib_2_0_la_CFLAGS = $(GLIB_CFLAGS) $(GOBJECT_CFLAGS) -Wall
libswe_glib_2_0_la_LIBADD = $(GLIB_LIBS) $(GOBJECT_LIBS) $(LIBSWE_LIBS)
libswe_glib_2_0_la_LIBADD = $(GLIB_LIBS) $(GOBJECT_LIBS) -lswe
libswe_glib_2_0_la_DEPENDENCIES = \
$(NULL)
@ -94,6 +94,7 @@ SweGlib_@SWE_GLIB_API_VERSION_U@_gir_LIBS = libswe-glib-2.0.la
SweGlib_@SWE_GLIB_API_VERSION_U@_gir_SCANNERFLAGS = --identifier-prefix=Gswe --symbol-prefix=gswe --warn-all
SweGlib_@SWE_GLIB_API_VERSION_U@_gir_INCLUDES = GLib-2.0 GObject-2.0
SweGlib_@SWE_GLIB_API_VERSION_U@_gir_CFLAGS = -D__SWE_GLIB_BUILDING__ -I$(top_srcdir) -I$(srcdir) -I$(builddir)
SweGlib_@SWE_GLIB_API_VERSION_U@_gir_LDFLAGS = $(GLIB_LIBS) $(GOBJECT_LIBS) -lswe
SweGlib_@SWE_GLIB_API_VERSION_U@_gir_EXPORT_PACKAGES = swe-glib
INTROSPECTION_GIRS = SweGlib-$(SWE_GLIB_API_VERSION).gir

@ -15,11 +15,11 @@
* You should have received a copy of the GNU General Public License
* along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <swephexp.h>
#include "swe-glib.h"
#include "swe-glib-private.h"
#include "../swe/src/swephexp.h"
#define glforeach(a, b) for ((a) = (b); (a); (a) = g_list_next((a)))
/**

@ -18,8 +18,8 @@
*/
#include <math.h>
#include <glib.h>
#include <swephexp.h>
#include "../swe/src/swephexp.h"
#include "swe-glib-private.h"
#include "swe-glib.h"
#include "gswe-timestamp.h"

@ -18,8 +18,8 @@
#include <glib.h>
#define GETTEXT_PACKAGE "swe-glib"
#include <glib/gi18n-lib.h>
#include <swephexp.h>
#include "../swe/src/swephexp.h"
#include "swe-glib.h"
#include "swe-glib-private.h"

@ -1 +0,0 @@
EXTRA_DIST = README

@ -1,5 +0,0 @@
This directory contains version 2.0 of the Swiss Ephemeris programming library
in a reduced form, so it can be used in an Autotools project like Astrognome.
If you need the full version, you can download it from
ftp://ftp.astro.com/pub/swisseph/ (as of July, 2013)

@ -1 +0,0 @@
EXTRA_DIST = swephprg.pdf swisseph.pdf

Binary file not shown.

Binary file not shown.

@ -1,54 +0,0 @@
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
License conditions
------------------
This file is part of Swiss Ephemeris.
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing.
Swiss Ephemeris is made available by its authors under a dual licensing
system. The software developer, who uses any part of Swiss Ephemeris
in his or her software, must choose between one of the two license models,
which are
a) GNU public license version 2 or later
b) Swiss Ephemeris Professional License
The choice must be made before the software developer distributes software
containing parts of Swiss Ephemeris to others, and before any public
service using the developed software is activated.
If the developer choses the GNU GPL software license, he or she must fulfill
the conditions of that license, which includes the obligation to place his
or her whole software project under the GNU GPL or a compatible license.
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
If the developer choses the Swiss Ephemeris Professional license,
he must follow the instructions as found in http://www.astro.com/swisseph/
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
and sign the corresponding license contract.
The License grants you the right to use, copy, modify and redistribute
Swiss Ephemeris, but only under certain conditions described in the License.
Among other things, the License requires that the copyright notices and
this notice be preserved on all copies.
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
The authors of Swiss Ephemeris have no control or influence over any of
the derived works, i.e. over software or services created by other
programmers which use Swiss Ephemeris functions.
The names of the authors or of the copyright holder (Astrodienst) must not
be used for promoting any software, product or service which uses or contains
the Swiss Ephemeris. This copyright notice is the ONLY place where the
names of the authors can legally appear, except in cases where they have
given special permission in writing.
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
for promoting such software, products or services.
*/

@ -1,25 +0,0 @@
lib_LTLIBRARIES = libswe-2.0.la
libswe_2_0_la_SOURCES = swedate.c swehouse.c swejpl.c swemmoon.c swemplan.c swepcalc.c sweph.c swepdate.c swephlib.c swecl.c swehel.c
libswe_2_0_la_CFLAGS = $(CFLAGS) -Wall
libswe_2_0_la_LIBADD = $(LIBS)
EXTRA_DIST = \
LICENSE \
README \
swemptab.c \
swemptab.h \
swedate.h \
swedll.h \
swehouse.h \
swejpl.h \
swenut2000a.h \
sweodef.h \
swepcalc.h \
swephexp.h \
sweph.h \
swephlib.h \
fixstars.cat \
sedeltat.txt.inactive \
sefstars.txt \
seorbel.txt \
$(NULL)

@ -1,6 +0,0 @@
This directory holds the Swiss Ephemeris library. It can be downloaded from
http://www.astro.com/swisseph/ and used via the GPL licence.
The original directory is stripped down, and the unneded files are deleted (like
the swetest source and such. In the future, even the library may be optimised
further.

File diff suppressed because it is too large Load Diff

@ -1,13 +0,0 @@
# This file allows to make new Delta T known to the Swiss Ephemeris.
# Note, these values override the values given in the internal Delta T
# table of the Swiss Ephemeris.
#
# If you want to use this file, change its file name and remove the
# the extension '.inactive'. As soon as you do so, the values below
# will be used, i.e. they will override the internal Delta T values
# of the Swiss Ephemeris.
#
# Format: year and seconds (decimal)
2007 65.15
2008 65.46
2009 65.78

File diff suppressed because it is too large Load Diff

@ -1,76 +0,0 @@
# Orbital elements of ficticious planets
# 27 Jan. 2000
#
# This file is part of the Swiss Ephemeris, from Version 1.52 on.
#
# Warning! These planets do not exist!
#
# The user can add his or her own elements.
# 960 is the maximum number of ficticious planets.
#
# The elements order is as follows:
# 1. epoch of elements (Julian day)
# 2. equinox (Julian day or "J1900" or "B1950" or "J2000")
# 3. mean anomaly at epoch
# 4. semi-axis
# 5. eccentricity
# 6. argument of perihelion (ang. distance of perihelion from node)
# 7. ascending node
# 8. inclination
# 9. name of planet
#
# use '#' for comments
# to compute a body with swe_calc(), use planet number
# ipl = SE_FICT_OFFSET_1 + number_of_elements_set,
# e.g. number of Kronos is ipl = 39 + 4 = 43
#
# Witte/Sieggruen planets, refined by James Neely
J1900, J1900, 163.7409, 40.99837, 0.00460, 171.4333, 129.8325, 1.0833, Cupido # 1
J1900, J1900, 27.6496, 50.66744, 0.00245, 148.1796, 161.3339, 1.0500, Hades # 2
J1900, J1900, 165.1232, 59.21436, 0.00120, 299.0440, 0.0000, 0.0000, Zeus # 3
J1900, J1900, 169.0193, 64.81690, 0.00305, 208.8801, 0.0000, 0.0000, Kronos # 4
J1900, J1900, 138.0533, 70.29949, 0.00000, 0.0000, 0.0000, 0.0000, Apollon # 5
J1900, J1900, 351.3350, 73.62765, 0.00000, 0.0000, 0.0000, 0.0000, Admetos # 6
J1900, J1900, 55.8983, 77.25568, 0.00000, 0.0000, 0.0000, 0.0000, Vulcanus # 7
J1900, J1900, 165.5163, 83.66907, 0.00000, 0.0000, 0.0000, 0.0000, Poseidon # 8
#
# Isis-Transpluto; elements from "Die Sterne" 3/1952, p. 70ff.
# Strubell does not give an equinox. 1945 is taken in order to
# reproduce the as best as ASTRON ephemeris. (This is a strange
# choice, though.)
# The epoch according to Strubell is 1772.76.
# 1772 is a leap year!
# The fraction is counted from 1 Jan. 1772
2368547.66, 2431456.5, 0.0, 77.775, 0.3, 0.7, 0, 0, Isis-Transpluto # 9
# Nibiru, elements from Christian Woeltge, Hannover
1856113.380954, 1856113.380954, 0.0, 234.8921, 0.981092, 103.966, -44.567, 158.708, Nibiru # 10
# Harrington, elements from Astronomical Journal 96(4), Oct. 1988
2374696.5, J2000, 0.0, 101.2, 0.411, 208.5, 275.4, 32.4, Harrington # 11
# according to W.G. Hoyt, "Planets X and Pluto", Tucson 1980, p. 63
2395662.5, 2395662.5, 34.05, 36.15, 0.10761, 284.75, 0, 0, Leverrier (Neptune) # 12
2395662.5, 2395662.5, 24.28, 37.25, 0.12062, 299.11, 0, 0, Adams (Neptune) # 13
2425977.5, 2425977.5, 281, 43.0, 0.202, 204.9, 0, 0, Lowell (Pluto) # 14
2425977.5, 2425977.5, 48.95, 55.1, 0.31, 280.1, 100, 15, Pickering (Pluto) # 15
# intramercurian hypothetical Vulcan acc. to L.H. Weston
J1900,JDATE, 252.8987988 + 707550.7341 * T, 0.13744, 0.019, 322.212069+1670.056*T, 47.787931-1670.056*T, 7.5, Vulcan # 16
# Selena/White Moon
J2000,JDATE, 242.2205555 + 5143.5418158 * T, 0.05280098949, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17
# Hypothetical planet Proserpina, according to http://www.geocities.com/Hollywood/Academy/7519/proserpina.html
# J1900, 170.73 + 51.05 * T
J1900,JDATE, 170.73, 79.225630, 0, 0, 0, 0, Proserpina #18
# Waldemath's Second Earth Moon
# Elements were derived by D.Koch from Waldemaths original elements as given in
# David Walters' book on Vulcan. They differ from Solar Fire (Graham Dawsons)
# elements, which are based on the assumption that the "mean longitude" given
# by Waldemath is an observation (a true longitude)
# Neither Swisseph nor Solar fire elements agree with Delphine Jay's ephemeris,
# which is obviously wrong.
2414290.95827875,2414290.95827875, 70.3407215 + 109023.2634989 * T, 0.0068400705250028, 0.1587, 8.14049594 + 2393.47417444 * T, 136.24878256 - 1131.71719709 * T, 2.5, Waldemath, geo # 19
#
# The following elements are for test only
# (Selena without T)
J2000,JDATE, 242.2205555, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17
# (Selena with T, gives exactly the same position)
J2000,JDATE, 242.2205555 + 5143.5418158 * T, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon with T Terms, geo # 17
J2000, JDATE, 174.794787 + 149472.5157715 * T, 0.38709831, 0.20563175 + 0.000020406 * T, 29.125226 + 0.3702885 * T, 48.330893 + 1.186189 * T, 7.004986 + 0.0018215 * T, Mercury elem. for equ. of date # 18
J2000, J2000, 174.794787 + 149472.5157715 * T, 0.38709831, 0.20563175 + 0.000020406 * T, 29.125226 + 0.2842872 * T, 48.330893 - 0.1254229 * T, 7.004986 - 0.0059516 * T, Mercury Test J2000 Elements# 18

File diff suppressed because it is too large Load Diff

@ -1,592 +0,0 @@
/*********************************************************
$Header: /home/dieter/sweph/RCS/swedate.c,v 1.75 2009/04/08 07:17:29 dieter Exp $
version 15-feb-89 16:30
swe_date_conversion()
swe_revjul()
swe_julday()
************************************************************/
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
License conditions
------------------
This file is part of Swiss Ephemeris.
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing.
Swiss Ephemeris is made available by its authors under a dual licensing
system. The software developer, who uses any part of Swiss Ephemeris
in his or her software, must choose between one of the two license models,
which are
a) GNU public license version 2 or later
b) Swiss Ephemeris Professional License
The choice must be made before the software developer distributes software
containing parts of Swiss Ephemeris to others, and before any public
service using the developed software is activated.
If the developer choses the GNU GPL software license, he or she must fulfill
the conditions of that license, which includes the obligation to place his
or her whole software project under the GNU GPL or a compatible license.
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
If the developer choses the Swiss Ephemeris Professional license,
he must follow the instructions as found in http://www.astro.com/swisseph/
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
and sign the corresponding license contract.
The License grants you the right to use, copy, modify and redistribute
Swiss Ephemeris, but only under certain conditions described in the License.
Among other things, the License requires that the copyright notices and
this notice be preserved on all copies.
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
The authors of Swiss Ephemeris have no control or influence over any of
the derived works, i.e. over software or services created by other
programmers which use Swiss Ephemeris functions.
The names of the authors or of the copyright holder (Astrodienst) must not
be used for promoting any software, product or service which uses or contains
the Swiss Ephemeris. This copyright notice is the ONLY place where the
names of the authors can legally appear, except in cases where they have
given special permission in writing.
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
for promoting such software, products or services.
*/
/*
swe_date_conversion():
This function converts some date+time input {d,m,y,uttime}
into the Julian day number tjd.
The function checks that the input is a legal combination
of dates; for illegal dates like 32 January 1993 it returns ERR
but still converts the date correctly, i.e. like 1 Feb 1993.
The function is usually used to convert user input of birth data
into the Julian day number. Illegal dates should be notified to the user.
Be aware that we always use astronomical year numbering for the years
before Christ, not the historical year numbering.
Astronomical years are done with negative numbers, historical
years with indicators BC or BCE (before common era).
Year 0 (astronomical) = 1 BC historical.
year -1 (astronomical) = 2 BC
etc.
Many users of Astro programs do not know about this difference.
Return: OK or ERR (for illegal date)
*********************************************************/
# include "swephexp.h"
# include "sweph.h"
static TLS AS_BOOL init_leapseconds_done = FALSE;
int CALL_CONV swe_date_conversion(int y,
int m,
int d, /* day, month, year */
double uttime, /* UT in hours (decimal) */
char c, /* calendar g[regorian]|j[ulian] */
double *tjd)
{
int rday, rmon, ryear;
double rut, jd;
int gregflag = SE_JUL_CAL;
if (c == 'g')
gregflag = SE_GREG_CAL;
rut = uttime; /* hours UT */
jd = swe_julday(y, m, d, rut, gregflag);
swe_revjul(jd, gregflag, &ryear, &rmon, &rday, &rut);
*tjd = jd;
if (rmon == m && rday == d && ryear == y) {
return OK;
} else {
return ERR;
}
} /* end date_conversion */
/*************** swe_julday ********************************************
* This function returns the absolute Julian day number (JD)
* for a given calendar date.
* The arguments are a calendar date: day, month, year as integers,
* hour as double with decimal fraction.
* If gregflag = SE_GREG_CAL (1), Gregorian calendar is assumed,
* if gregflag = SE_JUL_CAL (0),Julian calendar is assumed.
The Julian day number is a system of numbering all days continously
within the time range of known human history. It should be familiar
to every astrological or astronomical programmer. The time variable
in astronomical theories is usually expressed in Julian days or
Julian centuries (36525 days per century) relative to some start day;
the start day is called 'the epoch'.
The Julian day number is a double representing the number of
days since JD = 0.0 on 1 Jan -4712, 12:00 noon (in the Julian calendar).
Midnight has always a JD with fraction .5, because traditionally
the astronomical day started at noon. This was practical because
then there was no change of date during a night at the telescope.
From this comes also the fact the noon ephemerides were printed
before midnight ephemerides were introduced early in the 20th century.
NOTE: The Julian day number must not be confused with the Julian
calendar system.
Be aware the we always use astronomical year numbering for the years
before Christ, not the historical year numbering.
Astronomical years are done with negative numbers, historical
years with indicators BC or BCE (before common era).
Year 0 (astronomical) = 1 BC
year -1 (astronomical) = 2 BC
etc.
Original author: Marc Pottenger, Los Angeles.
with bug fix for year < -4711 15-aug-88 by Alois Treindl
(The parameter sequence m,d,y still indicates the US origin,
be careful because the similar function date_conversion() uses
other parameter sequence and also Astrodienst relative juldate.)
References: Oliver Montenbruck, Grundlagen der Ephemeridenrechnung,
Verlag Sterne und Weltraum (1987), p.49 ff
related functions: swe_revjul() reverse Julian day number: compute the
calendar date from a given JD
date_conversion() includes test for legal date values
and notifies errors like 32 January.
****************************************************************/
double CALL_CONV swe_julday(int year, int month, int day, double hour, int gregflag)
{
double jd;
double u,u0,u1,u2;
u = year;
if (month < 3) u -=1;
u0 = u + 4712.0;
u1 = month + 1.0;
if (u1 < 4) u1 += 12.0;
jd = floor(u0*365.25)
+ floor(30.6*u1+0.000001)
+ day + hour/24.0 - 63.5;
if (gregflag == SE_GREG_CAL) {
u2 = floor(fabs(u) / 100) - floor(fabs(u) / 400);
if (u < 0.0) u2 = -u2;
jd = jd - u2 + 2;
if ((u < 0.0) && (u/100 == floor(u/100)) && (u/400 != floor(u/400)))
jd -=1;
}
return jd;
}
/*** swe_revjul ******************************************************
swe_revjul() is the inverse function to swe_julday(), see the description
there.
Arguments are julian day number, calendar flag (0=julian, 1=gregorian)
return values are the calendar day, month, year and the hour of
the day with decimal fraction (0 .. 23.999999).
Be aware the we use astronomical year numbering for the years
before Christ, not the historical year numbering.
Astronomical years are done with negative numbers, historical
years with indicators BC or BCE (before common era).
Year 0 (astronomical) = 1 BC historical year
year -1 (astronomical) = 2 BC historical year
year -234 (astronomical) = 235 BC historical year
etc.
Original author Mark Pottenger, Los Angeles.
with bug fix for year < -4711 16-aug-88 Alois Treindl
*************************************************************************/
void CALL_CONV swe_revjul (double jd, int gregflag,
int *jyear, int *jmon, int *jday, double *jut)
{
double u0,u1,u2,u3,u4;
u0 = jd + 32082.5;
if (gregflag == SE_GREG_CAL) {
u1 = u0 + floor (u0/36525.0) - floor (u0/146100.0) - 38.0;
if (jd >= 1830691.5) u1 +=1;
u0 = u0 + floor (u1/36525.0) - floor (u1/146100.0) - 38.0;
}
u2 = floor (u0 + 123.0);
u3 = floor ( (u2 - 122.2) / 365.25);
u4 = floor ( (u2 - floor (365.25 * u3) ) / 30.6001);
*jmon = (int) (u4 - 1.0);
if (*jmon > 12) *jmon -= 12;
*jday = (int) (u2 - floor (365.25 * u3) - floor (30.6001 * u4));
*jyear = (int) (u3 + floor ( (u4 - 2.0) / 12.0) - 4800);
*jut = (jd - floor (jd + 0.5) + 0.5) * 24.0;
}
/* transform local time to UTC or UTC to local time
*
* input
* iyear ... dsec date and time
* d_timezone timezone offset
* output
* iyear_out ... dsec_out
*
* For time zones east of Greenwich, d_timezone is positive.
* For time zones west of Greenwich, d_timezone is negative.
*
* For conversion from local time to utc, use +d_timezone.
* For conversion from utc to local time, use -d_timezone.
*/
void CALL_CONV swe_utc_time_zone(
int32 iyear, int32 imonth, int32 iday,
int32 ihour, int32 imin, double dsec,
double d_timezone,
int32 *iyear_out, int32 *imonth_out, int32 *iday_out,
int32 *ihour_out, int32 *imin_out, double *dsec_out
)
{
double tjd, d;
AS_BOOL have_leapsec = FALSE;
double dhour;
if (dsec >= 60.0) {
have_leapsec = TRUE;
dsec -= 1.0;
}
dhour = ((double) ihour) + ((double) imin) / 60.0 + dsec / 3600.0;
tjd = swe_julday(iyear, imonth, iday, 0, SE_GREG_CAL);
dhour -= d_timezone;
if (dhour < 0.0) {
tjd -= 1.0;
dhour += 24.0;
}
if (dhour >= 24.0) {
tjd += 1.0;
dhour -= 24.0;
}
swe_revjul(tjd + 0.001, SE_GREG_CAL, iyear_out, imonth_out, iday_out, &d);
*ihour_out = (int) dhour;
d = (dhour - (double) *ihour_out) * 60;
*imin_out = (int) d;
*dsec_out = (d - (double) *imin_out) * 60;
if (have_leapsec)
*dsec_out += 1.0;
}
/*
* functions for the handling of UTC
*/
/* Leap seconds were inserted at the end of the following days:*/
#define NLEAP_SECONDS 26
#define NLEAP_SECONDS_SPACE 100
static TLS int leap_seconds[NLEAP_SECONDS_SPACE] = {
19720630,
19721231,
19731231,
19741231,
19751231,
19761231,
19771231,
19781231,
19791231,
19810630,
19820630,
19830630,
19850630,
19871231,
19891231,
19901231,
19920630,
19930630,
19940630,
19951231,
19970630,
19981231,
20051231,
20081231,
20120630,
20150630,
0 /* keep this 0 as end mark */
};
#define J1972 2441317.5
#define NLEAP_INIT 10
/* Read additional leap second dates from external file, if given.
*/
static int init_leapsec(void)
{
FILE *fp;
int ndat, ndat_last;
int tabsiz = 0;
int i;
char s[AS_MAXCH];
char *sp;
if (!init_leapseconds_done) {
init_leapseconds_done = TRUE;
tabsiz = NLEAP_SECONDS;
ndat_last = leap_seconds[NLEAP_SECONDS - 1];
/* no error message if file is missing */
if ((fp = swi_fopen(-1, "seleapsec.txt", swed.ephepath, NULL)) == NULL)
return NLEAP_SECONDS;
while(fgets(s, AS_MAXCH, fp) != NULL) {
sp = s;
while (*sp == ' ' || *sp == '\t') sp++;
sp++;
if (*sp == '#' || *sp == '\n')
continue;
ndat = atoi(s);
if (ndat <= ndat_last)
continue;
/* table space is limited. no error msg, if exceeded */
if (tabsiz >= NLEAP_SECONDS_SPACE)
return tabsiz;
leap_seconds[tabsiz] = ndat;
tabsiz++;
}
if (tabsiz > NLEAP_SECONDS) leap_seconds[tabsiz] = 0; /* end mark */
fclose(fp);
return tabsiz;
}
/* find table size */
tabsiz = 0;
for (i = 0; i < NLEAP_SECONDS_SPACE; i++) {
if (leap_seconds[i] == 0)
break;
else
tabsiz++;
}
return tabsiz;
}
/*
* Input: Clock time UTC, year, month, day, hour, minute, second (decimal).
* gregflag Calendar flag
* serr error string
* Output: An array of doubles:
* dret[0] = Julian day number TT (ET)
* dret[1] = Julian day number UT1
*
* Function returns OK or Error.
*
* - Before 1972, swe_utc_to_jd() treats its input time as UT1.
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
* UTC second was regularly changed, so that UTC remained very close to UT1.
* - From 1972 on, input time is treated as UTC.
* - If delta_t - nleap - 32.184 > 1, the input time is treated as UT1.
* Note: Like this we avoid errors greater than 1 second in case that
* the leap seconds table (or the Swiss Ephemeris version) is not updated
* for a long time.
*/
int32 CALL_CONV swe_utc_to_jd(int32 iyear, int32 imonth, int32 iday, int32 ihour, int32 imin, double dsec, int32 gregflag, double *dret, char *serr)
{
double tjd_ut1, tjd_et, tjd_et_1972, dhour, d;
int iyear2, imonth2, iday2;
int i, j, ndat, nleap, tabsiz_nleap;
/*
* error handling: invalid iyear etc.
*/
tjd_ut1 = swe_julday(iyear, imonth, iday, 0, gregflag);
swe_revjul(tjd_ut1, gregflag, &iyear2, &imonth2, &iday2, &d);
if (iyear != iyear2 || imonth != imonth2 || iday != iday2) {
if (serr != NULL)
sprintf(serr, "invalid date: year = %d, month = %d, day = %d", iyear, imonth, iday);
return ERR;
}
if (ihour < 0 || ihour > 23
|| imin < 0 || imin > 59
|| dsec < 0 || dsec >= 61
|| (dsec >= 60 && (imin < 59 || ihour < 23 || tjd_ut1 < J1972))) {
if (serr != NULL)
sprintf(serr, "invalid time: %d:%d:%.2f", ihour, imin, dsec);
return ERR;
}
dhour = (double) ihour + ((double) imin) / 60.0 + dsec / 3600.0;
/*
* before 1972, we treat input date as UT1
*/
if (tjd_ut1 < J1972) {
dret[1] = swe_julday(iyear, imonth, iday, dhour, gregflag);
dret[0] = dret[1] + swe_deltat_ex(dret[1], -1, NULL);
return OK;
}
/*
* if gregflag = Julian calendar, convert to gregorian calendar
*/
if (gregflag == SE_JUL_CAL) {
gregflag = SE_GREG_CAL;
swe_revjul(tjd_ut1, gregflag, &iyear, &imonth, &iday, &d);
}
/*
* number of leap seconds since 1972:
*/
tabsiz_nleap = init_leapsec();
nleap = NLEAP_INIT; /* initial difference between UTC and TAI in 1972 */
ndat = iyear * 10000 + imonth * 100 + iday;
for (i = 0; i < tabsiz_nleap; i++) {
if (ndat <= leap_seconds[i])
break;
nleap++;
}
/*
* For input dates > today:
* If leap seconds table is not up to date, we'd better interpret the
* input time as UT1, not as UTC. How do we find out?
* Check, if delta_t - nleap - 32.184 > 0.9
*/
d = swe_deltat_ex(tjd_ut1, -1, NULL) * 86400.0;
if (d - (double) nleap - 32.184 >= 1.0) {
dret[1] = tjd_ut1 + dhour / 24.0;
dret[0] = dret[1] + swe_deltat_ex(dret[1], -1, NULL);
return OK;
}
/*
* if input second is 60: is it a valid leap second ?
*/
if (dsec >= 60) {
j = 0;
for (i = 0; i < tabsiz_nleap; i++) {
if (ndat == leap_seconds[i]) {
j = 1;
break;
}
}
if (j != 1) {
if (serr != NULL)
sprintf(serr, "invalid time (no leap second!): %d:%d:%.2f", ihour, imin, dsec);
return ERR;
}
}
/*
* convert UTC to ET and UT1
*/
/* the number of days between input date and 1 jan 1972: */
d = tjd_ut1 - J1972;
/* SI time since 1972, ignoring leap seconds: */
d += (double) ihour / 24.0 + (double) imin / 1440.0 + dsec / 86400.0;
/* ET (TT) */
tjd_et_1972 = J1972 + (32.184 + NLEAP_INIT) / 86400.0;
tjd_et = tjd_et_1972 + d + ((double) (nleap - NLEAP_INIT)) / 86400.0;
d = swe_deltat_ex(tjd_et, -1, NULL);
tjd_ut1 = tjd_et - swe_deltat_ex(tjd_et - d, -1, NULL);
tjd_ut1 = tjd_et - swe_deltat_ex(tjd_ut1, -1, NULL);
dret[0] = tjd_et;
dret[1] = tjd_ut1;
return OK;
}
/*
* Input: tjd_et Julian day number, terrestrial time (ephemeris time).
* gregfalg Calendar flag
* Output: UTC year, month, day, hour, minute, second (decimal).
*
* - Before 1 jan 1972 UTC, output UT1.
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
* UTC second was regularly changed, so that UTC remained very close to UT1.
* - From 1972 on, output is UTC.
* - If delta_t - nleap - 32.184 > 1, the output is UT1.
* Note: Like this we avoid errors greater than 1 second in case that
* the leap seconds table (or the Swiss Ephemeris version) has not been
* updated for a long time.
*/
void CALL_CONV swe_jdet_to_utc(double tjd_et, int32 gregflag, int32 *iyear, int32 *imonth, int32 *iday, int32 *ihour, int32 *imin, double *dsec)
{
int i;
int second_60 = 0;
int iyear2, imonth2, iday2, nleap, ndat, tabsiz_nleap;
double d, tjd, tjd_et_1972, tjd_ut, dret[10];
/*
* if tjd_et is before 1 jan 1972 UTC, return UT1
*/
tjd_et_1972 = J1972 + (32.184 + NLEAP_INIT) / 86400.0;
d = swe_deltat_ex(tjd_et, -1, NULL);
tjd_ut = tjd_et - swe_deltat_ex(tjd_et - d, -1, NULL);
tjd_ut = tjd_et - swe_deltat_ex(tjd_ut, -1, NULL);
if (tjd_et < tjd_et_1972) {
swe_revjul(tjd_ut, gregflag, iyear, imonth, iday, &d);
*ihour = (int32) d;
d -= (double) *ihour;
d *= 60;
*imin = (int32) d;
*dsec = (d - (double) *imin) * 60.0;
return;
}
/*
* minimum number of leap seconds since 1972; we may be missing one leap
* second
*/
tabsiz_nleap = init_leapsec();
swe_revjul(tjd_ut-1, SE_GREG_CAL, &iyear2, &imonth2, &iday2, &d);
ndat = iyear2 * 10000 + imonth2 * 100 + iday2;
nleap = 0;
for (i = 0; i < tabsiz_nleap; i++) {
if (ndat <= leap_seconds[i])
break;
nleap++;
}
/* date of potentially missing leapsecond */
if (nleap < tabsiz_nleap) {
i = leap_seconds[nleap];
iyear2 = i / 10000;
imonth2 = (i % 10000) / 100;;
iday2 = i % 100;
tjd = swe_julday(iyear2, imonth2, iday2, 0, SE_GREG_CAL);
swe_revjul(tjd+1, SE_GREG_CAL, &iyear2, &imonth2, &iday2, &d);
swe_utc_to_jd(iyear2,imonth2,iday2, 0, 0, 0, SE_GREG_CAL, dret, NULL);
d = tjd_et - dret[0];
if (d >= 0) {
nleap++;
} else if (d < 0 && d > -1.0/86400.0) {
second_60 = 1;
}
}
/*
* UTC, still unsure about one leap second
*/
tjd = J1972 + (tjd_et - tjd_et_1972) - ((double) nleap + second_60) / 86400.0;
swe_revjul(tjd, SE_GREG_CAL, iyear, imonth, iday, &d);
*ihour = (int32) d;
d -= (double) *ihour;
d *= 60;
*imin = (int32) d;
*dsec = (d - (double) *imin) * 60.0 + second_60;
/*
* For input dates > today:
* If leap seconds table is not up to date, we'd better interpret the
* input time as UT1, not as UTC. How do we find out?
* Check, if delta_t - nleap - 32.184 > 0.9
*/
d = swe_deltat_ex(tjd_et, -1, NULL);
d = swe_deltat_ex(tjd_et - d, -1, NULL);
if (d * 86400.0 - (double) (nleap + NLEAP_INIT) - 32.184 >= 1.0) {
swe_revjul(tjd_et - d, SE_GREG_CAL, iyear, imonth, iday, &d);
*ihour = (int32) d;
d -= (double) *ihour;
d *= 60;
*imin = (int32) d;
*dsec = (d - (double) *imin) * 60.0;
}
if (gregflag == SE_JUL_CAL) {
tjd = swe_julday(*iyear, *imonth, *iday, 0, SE_GREG_CAL);
swe_revjul(tjd, gregflag, iyear, imonth, iday, &d);
}
}
/*
* Input: tjd_ut Julian day number, universal time (UT1).
* gregfalg Calendar flag
* Output: UTC year, month, day, hour, minute, second (decimal).
*
* - Before 1 jan 1972 UTC, output UT1.
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
* UTC second was regularly changed, so that UTC remained very close to UT1.
* - From 1972 on, output is UTC.
* - If delta_t - nleap - 32.184 > 1, the output is UT1.
* Note: Like this we avoid errors greater than 1 second in case that
* the leap seconds table (or the Swiss Ephemeris version) has not been
* updated for a long time.
*/
void CALL_CONV swe_jdut1_to_utc(double tjd_ut, int32 gregflag, int32 *iyear, int32 *imonth, int32 *iday, int32 *ihour, int32 *imin, double *dsec)
{
double tjd_et = tjd_ut + swe_deltat_ex(tjd_ut, -1, NULL);
swe_jdet_to_utc(tjd_et, gregflag, iyear, imonth, iday, ihour, imin, dsec);
}

@ -1,82 +0,0 @@
/*********************************************************
$Header: /home/dieter/sweph/RCS/swedate.h,v 1.74 2008/06/16 10:07:20 dieter Exp $
version 15-feb-89 16:30
*********************************************************/
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
License conditions
------------------
This file is part of Swiss Ephemeris.
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing.
Swiss Ephemeris is made available by its authors under a dual licensing
system. The software developer, who uses any part of Swiss Ephemeris
in his or her software, must choose between one of the two license models,
which are
a) GNU public license version 2 or later
b) Swiss Ephemeris Professional License
The choice must be made before the software developer distributes software
containing parts of Swiss Ephemeris to others, and before any public
service using the developed software is activated.
If the developer choses the GNU GPL software license, he or she must fulfill
the conditions of that license, which includes the obligation to place his
or her whole software project under the GNU GPL or a compatible license.
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
If the developer choses the Swiss Ephemeris Professional license,
he must follow the instructions as found in http://www.astro.com/swisseph/
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
and sign the corresponding license contract.