Remove the bundled Swiss Ephemeris library
parent
aadf4a280e
commit
e03ed37133
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@ -1,31 +0,0 @@
|
||||
# This file contains the dates of leap seconds to be taken into account
|
||||
# by the Swiss Ephemeris.
|
||||
# For each new leap second add the date of its insertion in the format
|
||||
# yyyymmdd, e.g. "20081231" for 21 december 2008
|
||||
19720630
|
||||
19721231
|
||||
19731231
|
||||
19741231
|
||||
19751231
|
||||
19761231
|
||||
19771231
|
||||
19781231
|
||||
19791231
|
||||
19810630
|
||||
19820630
|
||||
19830630
|
||||
19850630
|
||||
19871231
|
||||
19891231
|
||||
19901231
|
||||
19920630
|
||||
19930630
|
||||
19949630
|
||||
19951231
|
||||
19970630
|
||||
19981231
|
||||
20051231
|
||||
20081231
|
||||
20120630
|
||||
20150630
|
||||
20161231
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,76 +0,0 @@
|
||||
# Orbital elements of ficticious planets
|
||||
# 27 Jan. 2000
|
||||
#
|
||||
# This file is part of the Swiss Ephemeris, from Version 1.52 on.
|
||||
#
|
||||
# Warning! These planets do not exist!
|
||||
#
|
||||
# The user can add his or her own elements.
|
||||
# 960 is the maximum number of ficticious planets.
|
||||
#
|
||||
# The elements order is as follows:
|
||||
# 1. epoch of elements (Julian day)
|
||||
# 2. equinox (Julian day or "J1900" or "B1950" or "J2000")
|
||||
# 3. mean anomaly at epoch
|
||||
# 4. semi-axis
|
||||
# 5. eccentricity
|
||||
# 6. argument of perihelion (ang. distance of perihelion from node)
|
||||
# 7. ascending node
|
||||
# 8. inclination
|
||||
# 9. name of planet
|
||||
#
|
||||
# use '#' for comments
|
||||
# to compute a body with swe_calc(), use planet number
|
||||
# ipl = SE_FICT_OFFSET_1 + number_of_elements_set,
|
||||
# e.g. number of Kronos is ipl = 39 + 4 = 43
|
||||
#
|
||||
# Witte/Sieggruen planets, refined by James Neely
|
||||
J1900, J1900, 163.7409, 40.99837, 0.00460, 171.4333, 129.8325, 1.0833, Cupido # 1
|
||||
J1900, J1900, 27.6496, 50.66744, 0.00245, 148.1796, 161.3339, 1.0500, Hades # 2
|
||||
J1900, J1900, 165.1232, 59.21436, 0.00120, 299.0440, 0.0000, 0.0000, Zeus # 3
|
||||
J1900, J1900, 169.0193, 64.81690, 0.00305, 208.8801, 0.0000, 0.0000, Kronos # 4
|
||||
J1900, J1900, 138.0533, 70.29949, 0.00000, 0.0000, 0.0000, 0.0000, Apollon # 5
|
||||
J1900, J1900, 351.3350, 73.62765, 0.00000, 0.0000, 0.0000, 0.0000, Admetos # 6
|
||||
J1900, J1900, 55.8983, 77.25568, 0.00000, 0.0000, 0.0000, 0.0000, Vulcanus # 7
|
||||
J1900, J1900, 165.5163, 83.66907, 0.00000, 0.0000, 0.0000, 0.0000, Poseidon # 8
|
||||
#
|
||||
# Isis-Transpluto; elements from "Die Sterne" 3/1952, p. 70ff.
|
||||
# Strubell does not give an equinox. 1945 is taken in order to
|
||||
# reproduce the as best as ASTRON ephemeris. (This is a strange
|
||||
# choice, though.)
|
||||
# The epoch according to Strubell is 1772.76.
|
||||
# 1772 is a leap year!
|
||||
# The fraction is counted from 1 Jan. 1772
|
||||
2368547.66, 2431456.5, 0.0, 77.775, 0.3, 0.7, 0, 0, Isis-Transpluto # 9
|
||||
# Nibiru, elements from Christian Woeltge, Hannover
|
||||
1856113.380954, 1856113.380954, 0.0, 234.8921, 0.981092, 103.966, -44.567, 158.708, Nibiru # 10
|
||||
# Harrington, elements from Astronomical Journal 96(4), Oct. 1988
|
||||
2374696.5, J2000, 0.0, 101.2, 0.411, 208.5, 275.4, 32.4, Harrington # 11
|
||||
# according to W.G. Hoyt, "Planets X and Pluto", Tucson 1980, p. 63
|
||||
2395662.5, 2395662.5, 34.05, 36.15, 0.10761, 284.75, 0, 0, Leverrier (Neptune) # 12
|
||||
2395662.5, 2395662.5, 24.28, 37.25, 0.12062, 299.11, 0, 0, Adams (Neptune) # 13
|
||||
2425977.5, 2425977.5, 281, 43.0, 0.202, 204.9, 0, 0, Lowell (Pluto) # 14
|
||||
2425977.5, 2425977.5, 48.95, 55.1, 0.31, 280.1, 100, 15, Pickering (Pluto) # 15
|
||||
# intramercurian hypothetical Vulcan acc. to L.H. Weston
|
||||
J1900,JDATE, 252.8987988 + 707550.7341 * T, 0.13744, 0.019, 322.212069+1670.056*T, 47.787931-1670.056*T, 7.5, Vulcan # 16
|
||||
# Selena/White Moon
|
||||
J2000,JDATE, 242.2205555 + 5143.5418158 * T, 0.05280098949, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17
|
||||
# Hypothetical planet Proserpina, according to http://www.geocities.com/Hollywood/Academy/7519/proserpina.html
|
||||
# J1900, 170.73 + 51.05 * T
|
||||
J1900,JDATE, 170.73, 79.225630, 0, 0, 0, 0, Proserpina #18
|
||||
# Waldemath's Second Earth Moon
|
||||
# Elements were derived by D.Koch from Waldemaths original elements as given in
|
||||
# David Walters' book on Vulcan. They differ from Solar Fire (Graham Dawsons)
|
||||
# elements, which are based on the assumption that the "mean longitude" given
|
||||
# by Waldemath is an observation (a true longitude)
|
||||
# Neither Swisseph nor Solar fire elements agree with Delphine Jay's ephemeris,
|
||||
# which is obviously wrong.
|
||||
2414290.95827875,2414290.95827875, 70.3407215 + 109023.2634989 * T, 0.0068400705250028, 0.1587, 8.14049594 + 2393.47417444 * T, 136.24878256 - 1131.71719709 * T, 2.5, Waldemath, geo # 19
|
||||
#
|
||||
# The following elements are for test only
|
||||
# (Selena without T)
|
||||
J2000,JDATE, 242.2205555, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17
|
||||
# (Selena with T, gives exactly the same position)
|
||||
J2000,JDATE, 242.2205555 + 5143.5418158 * T, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon with T Terms, geo # 17
|
||||
J2000, JDATE, 174.794787 + 149472.5157715 * T, 0.38709831, 0.20563175 + 0.000020406 * T, 29.125226 + 0.3702885 * T, 48.330893 + 1.186189 * T, 7.004986 + 0.0018215 * T, Mercury elem. for equ. of date # 18
|
||||
J2000, J2000, 174.794787 + 149472.5157715 * T, 0.38709831, 0.20563175 + 0.000020406 * T, 29.125226 + 0.2842872 * T, 48.330893 - 0.1254229 * T, 7.004986 - 0.0059516 * T, Mercury Test J2000 Elements# 18
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1 +0,0 @@
|
||||
EXTRA_DIST = README
|
@ -1,5 +0,0 @@
|
||||
This directory contains version 2.0 of the Swiss Ephemeris programming library
|
||||
in a reduced form, so it can be used in an Autotools project like Astrognome.
|
||||
|
||||
If you need the full version, you can download it from
|
||||
ftp://ftp.astro.com/pub/swisseph/ (as of July, 2013)
|
@ -1 +0,0 @@
|
||||
EXTRA_DIST = swephprg.pdf swisseph.pdf
|
Binary file not shown.
Binary file not shown.
@ -1,54 +0,0 @@
|
||||
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
|
||||
|
||||
License conditions
|
||||
------------------
|
||||
|
||||
This file is part of Swiss Ephemeris.
|
||||
|
||||
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
|
||||
or distributor accepts any responsibility for the consequences of using it,
|
||||
or for whether it serves any particular purpose or works at all, unless he
|
||||
or she says so in writing.
|
||||
|
||||
Swiss Ephemeris is made available by its authors under a dual licensing
|
||||
system. The software developer, who uses any part of Swiss Ephemeris
|
||||
in his or her software, must choose between one of the two license models,
|
||||
which are
|
||||
a) GNU public license version 2 or later
|
||||
b) Swiss Ephemeris Professional License
|
||||
|
||||
The choice must be made before the software developer distributes software
|
||||
containing parts of Swiss Ephemeris to others, and before any public
|
||||
service using the developed software is activated.
|
||||
|
||||
If the developer choses the GNU GPL software license, he or she must fulfill
|
||||
the conditions of that license, which includes the obligation to place his
|
||||
or her whole software project under the GNU GPL or a compatible license.
|
||||
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
||||
|
||||
If the developer choses the Swiss Ephemeris Professional license,
|
||||
he must follow the instructions as found in http://www.astro.com/swisseph/
|
||||
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
|
||||
and sign the corresponding license contract.
|
||||
|
||||
The License grants you the right to use, copy, modify and redistribute
|
||||
Swiss Ephemeris, but only under certain conditions described in the License.
|
||||
Among other things, the License requires that the copyright notices and
|
||||
this notice be preserved on all copies.
|
||||
|
||||
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
|
||||
|
||||
The authors of Swiss Ephemeris have no control or influence over any of
|
||||
the derived works, i.e. over software or services created by other
|
||||
programmers which use Swiss Ephemeris functions.
|
||||
|
||||
The names of the authors or of the copyright holder (Astrodienst) must not
|
||||
be used for promoting any software, product or service which uses or contains
|
||||
the Swiss Ephemeris. This copyright notice is the ONLY place where the
|
||||
names of the authors can legally appear, except in cases where they have
|
||||
given special permission in writing.
|
||||
|
||||
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
|
||||
for promoting such software, products or services.
|
||||
*/
|
||||
|
@ -1,25 +0,0 @@
|
||||
lib_LTLIBRARIES = libswe-2.0.la
|
||||
libswe_2_0_la_SOURCES = swedate.c swehouse.c swejpl.c swemmoon.c swemplan.c swepcalc.c sweph.c swepdate.c swephlib.c swecl.c swehel.c
|
||||
libswe_2_0_la_CFLAGS = $(CFLAGS) -Wall
|
||||
libswe_2_0_la_LIBADD = $(LIBS)
|
||||
|
||||
EXTRA_DIST = \
|
||||
LICENSE \
|
||||
README \
|
||||
swemptab.c \
|
||||
swemptab.h \
|
||||
swedate.h \
|
||||
swedll.h \
|
||||
swehouse.h \
|
||||
swejpl.h \
|
||||
swenut2000a.h \
|
||||
sweodef.h \
|
||||
swepcalc.h \
|
||||
swephexp.h \
|
||||
sweph.h \
|
||||
swephlib.h \
|
||||
fixstars.cat \
|
||||
sedeltat.txt.inactive \
|
||||
sefstars.txt \
|
||||
seorbel.txt \
|
||||
$(NULL)
|
@ -1,6 +0,0 @@
|
||||
This directory holds the Swiss Ephemeris library. It can be downloaded from
|
||||
http://www.astro.com/swisseph/ and used via the GPL licence.
|
||||
|
||||
The original directory is stripped down, and the unneded files are deleted (like
|
||||
the swetest source and such. In the future, even the library may be optimised
|
||||
further.
|
File diff suppressed because it is too large
Load Diff
@ -1,13 +0,0 @@
|
||||
# This file allows to make new Delta T known to the Swiss Ephemeris.
|
||||
# Note, these values override the values given in the internal Delta T
|
||||
# table of the Swiss Ephemeris.
|
||||
#
|
||||
# If you want to use this file, change its file name and remove the
|
||||
# the extension '.inactive'. As soon as you do so, the values below
|
||||
# will be used, i.e. they will override the internal Delta T values
|
||||
# of the Swiss Ephemeris.
|
||||
#
|
||||
# Format: year and seconds (decimal)
|
||||
2007 65.15
|
||||
2008 65.46
|
||||
2009 65.78
|
File diff suppressed because it is too large
Load Diff
@ -1,76 +0,0 @@
|
||||
# Orbital elements of ficticious planets
|
||||
# 27 Jan. 2000
|
||||
#
|
||||
# This file is part of the Swiss Ephemeris, from Version 1.52 on.
|
||||
#
|
||||
# Warning! These planets do not exist!
|
||||
#
|
||||
# The user can add his or her own elements.
|
||||
# 960 is the maximum number of ficticious planets.
|
||||
#
|
||||
# The elements order is as follows:
|
||||
# 1. epoch of elements (Julian day)
|
||||
# 2. equinox (Julian day or "J1900" or "B1950" or "J2000")
|
||||
# 3. mean anomaly at epoch
|
||||
# 4. semi-axis
|
||||
# 5. eccentricity
|
||||
# 6. argument of perihelion (ang. distance of perihelion from node)
|
||||
# 7. ascending node
|
||||
# 8. inclination
|
||||
# 9. name of planet
|
||||
#
|
||||
# use '#' for comments
|
||||
# to compute a body with swe_calc(), use planet number
|
||||
# ipl = SE_FICT_OFFSET_1 + number_of_elements_set,
|
||||
# e.g. number of Kronos is ipl = 39 + 4 = 43
|
||||
#
|
||||
# Witte/Sieggruen planets, refined by James Neely
|
||||
J1900, J1900, 163.7409, 40.99837, 0.00460, 171.4333, 129.8325, 1.0833, Cupido # 1
|
||||
J1900, J1900, 27.6496, 50.66744, 0.00245, 148.1796, 161.3339, 1.0500, Hades # 2
|
||||
J1900, J1900, 165.1232, 59.21436, 0.00120, 299.0440, 0.0000, 0.0000, Zeus # 3
|
||||
J1900, J1900, 169.0193, 64.81690, 0.00305, 208.8801, 0.0000, 0.0000, Kronos # 4
|
||||
J1900, J1900, 138.0533, 70.29949, 0.00000, 0.0000, 0.0000, 0.0000, Apollon # 5
|
||||
J1900, J1900, 351.3350, 73.62765, 0.00000, 0.0000, 0.0000, 0.0000, Admetos # 6
|
||||
J1900, J1900, 55.8983, 77.25568, 0.00000, 0.0000, 0.0000, 0.0000, Vulcanus # 7
|
||||
J1900, J1900, 165.5163, 83.66907, 0.00000, 0.0000, 0.0000, 0.0000, Poseidon # 8
|
||||
#
|
||||
# Isis-Transpluto; elements from "Die Sterne" 3/1952, p. 70ff.
|
||||
# Strubell does not give an equinox. 1945 is taken in order to
|
||||
# reproduce the as best as ASTRON ephemeris. (This is a strange
|
||||
# choice, though.)
|
||||
# The epoch according to Strubell is 1772.76.
|
||||
# 1772 is a leap year!
|
||||
# The fraction is counted from 1 Jan. 1772
|
||||
2368547.66, 2431456.5, 0.0, 77.775, 0.3, 0.7, 0, 0, Isis-Transpluto # 9
|
||||
# Nibiru, elements from Christian Woeltge, Hannover
|
||||
1856113.380954, 1856113.380954, 0.0, 234.8921, 0.981092, 103.966, -44.567, 158.708, Nibiru # 10
|
||||
# Harrington, elements from Astronomical Journal 96(4), Oct. 1988
|
||||
2374696.5, J2000, 0.0, 101.2, 0.411, 208.5, 275.4, 32.4, Harrington # 11
|
||||
# according to W.G. Hoyt, "Planets X and Pluto", Tucson 1980, p. 63
|
||||
2395662.5, 2395662.5, 34.05, 36.15, 0.10761, 284.75, 0, 0, Leverrier (Neptune) # 12
|
||||
2395662.5, 2395662.5, 24.28, 37.25, 0.12062, 299.11, 0, 0, Adams (Neptune) # 13
|
||||
2425977.5, 2425977.5, 281, 43.0, 0.202, 204.9, 0, 0, Lowell (Pluto) # 14
|
||||
2425977.5, 2425977.5, 48.95, 55.1, 0.31, 280.1, 100, 15, Pickering (Pluto) # 15
|
||||
# intramercurian hypothetical Vulcan acc. to L.H. Weston
|
||||
J1900,JDATE, 252.8987988 + 707550.7341 * T, 0.13744, 0.019, 322.212069+1670.056*T, 47.787931-1670.056*T, 7.5, Vulcan # 16
|
||||
# Selena/White Moon
|
||||
J2000,JDATE, 242.2205555 + 5143.5418158 * T, 0.05280098949, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17
|
||||
# Hypothetical planet Proserpina, according to http://www.geocities.com/Hollywood/Academy/7519/proserpina.html
|
||||
# J1900, 170.73 + 51.05 * T
|
||||
J1900,JDATE, 170.73, 79.225630, 0, 0, 0, 0, Proserpina #18
|
||||
# Waldemath's Second Earth Moon
|
||||
# Elements were derived by D.Koch from Waldemaths original elements as given in
|
||||
# David Walters' book on Vulcan. They differ from Solar Fire (Graham Dawsons)
|
||||
# elements, which are based on the assumption that the "mean longitude" given
|
||||
# by Waldemath is an observation (a true longitude)
|
||||
# Neither Swisseph nor Solar fire elements agree with Delphine Jay's ephemeris,
|
||||
# which is obviously wrong.
|
||||
2414290.95827875,2414290.95827875, 70.3407215 + 109023.2634989 * T, 0.0068400705250028, 0.1587, 8.14049594 + 2393.47417444 * T, 136.24878256 - 1131.71719709 * T, 2.5, Waldemath, geo # 19
|
||||
#
|
||||
# The following elements are for test only
|
||||
# (Selena without T)
|
||||
J2000,JDATE, 242.2205555, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17
|
||||
# (Selena with T, gives exactly the same position)
|
||||
J2000,JDATE, 242.2205555 + 5143.5418158 * T, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon with T Terms, geo # 17
|
||||
J2000, JDATE, 174.794787 + 149472.5157715 * T, 0.38709831, 0.20563175 + 0.000020406 * T, 29.125226 + 0.3702885 * T, 48.330893 + 1.186189 * T, 7.004986 + 0.0018215 * T, Mercury elem. for equ. of date # 18
|
||||
J2000, J2000, 174.794787 + 149472.5157715 * T, 0.38709831, 0.20563175 + 0.000020406 * T, 29.125226 + 0.2842872 * T, 48.330893 - 0.1254229 * T, 7.004986 - 0.0059516 * T, Mercury Test J2000 Elements# 18
|
File diff suppressed because it is too large
Load Diff
@ -1,592 +0,0 @@
|
||||
/*********************************************************
|
||||
$Header: /home/dieter/sweph/RCS/swedate.c,v 1.75 2009/04/08 07:17:29 dieter Exp $
|
||||
version 15-feb-89 16:30
|
||||
|
||||
swe_date_conversion()
|
||||
swe_revjul()
|
||||
swe_julday()
|
||||
|
||||
************************************************************/
|
||||
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
|
||||
|
||||
License conditions
|
||||
------------------
|
||||
|
||||
This file is part of Swiss Ephemeris.
|
||||
|
||||
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
|
||||
or distributor accepts any responsibility for the consequences of using it,
|
||||
or for whether it serves any particular purpose or works at all, unless he
|
||||
or she says so in writing.
|
||||
|
||||
Swiss Ephemeris is made available by its authors under a dual licensing
|
||||
system. The software developer, who uses any part of Swiss Ephemeris
|
||||
in his or her software, must choose between one of the two license models,
|
||||
which are
|
||||
a) GNU public license version 2 or later
|
||||
b) Swiss Ephemeris Professional License
|
||||
|
||||
The choice must be made before the software developer distributes software
|
||||
containing parts of Swiss Ephemeris to others, and before any public
|
||||
service using the developed software is activated.
|
||||
|
||||
If the developer choses the GNU GPL software license, he or she must fulfill
|
||||
the conditions of that license, which includes the obligation to place his
|
||||
or her whole software project under the GNU GPL or a compatible license.
|
||||
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
||||
|
||||
If the developer choses the Swiss Ephemeris Professional license,
|
||||
he must follow the instructions as found in http://www.astro.com/swisseph/
|
||||
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
|
||||
and sign the corresponding license contract.
|
||||
|
||||
The License grants you the right to use, copy, modify and redistribute
|
||||
Swiss Ephemeris, but only under certain conditions described in the License.
|
||||
Among other things, the License requires that the copyright notices and
|
||||
this notice be preserved on all copies.
|
||||
|
||||
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
|
||||
|
||||
The authors of Swiss Ephemeris have no control or influence over any of
|
||||
the derived works, i.e. over software or services created by other
|
||||
programmers which use Swiss Ephemeris functions.
|
||||
|
||||
The names of the authors or of the copyright holder (Astrodienst) must not
|
||||
be used for promoting any software, product or service which uses or contains
|
||||
the Swiss Ephemeris. This copyright notice is the ONLY place where the
|
||||
names of the authors can legally appear, except in cases where they have
|
||||
given special permission in writing.
|
||||
|
||||
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
|
||||
for promoting such software, products or services.
|
||||
*/
|
||||
|
||||
/*
|
||||
swe_date_conversion():
|
||||
This function converts some date+time input {d,m,y,uttime}
|
||||
into the Julian day number tjd.
|
||||
The function checks that the input is a legal combination
|
||||
of dates; for illegal dates like 32 January 1993 it returns ERR
|
||||
but still converts the date correctly, i.e. like 1 Feb 1993.
|
||||
The function is usually used to convert user input of birth data
|
||||
into the Julian day number. Illegal dates should be notified to the user.
|
||||
|
||||
Be aware that we always use astronomical year numbering for the years
|
||||
before Christ, not the historical year numbering.
|
||||
Astronomical years are done with negative numbers, historical
|
||||
years with indicators BC or BCE (before common era).
|
||||
Year 0 (astronomical) = 1 BC historical.
|
||||
year -1 (astronomical) = 2 BC
|
||||
etc.
|
||||
Many users of Astro programs do not know about this difference.
|
||||
|
||||
Return: OK or ERR (for illegal date)
|
||||
*********************************************************/
|
||||
|
||||
# include "swephexp.h"
|
||||
# include "sweph.h"
|
||||
|
||||
static TLS AS_BOOL init_leapseconds_done = FALSE;
|
||||
|
||||
|
||||
int CALL_CONV swe_date_conversion(int y,
|
||||
int m,
|
||||
int d, /* day, month, year */
|
||||
double uttime, /* UT in hours (decimal) */
|
||||
char c, /* calendar g[regorian]|j[ulian] */
|
||||
double *tjd)
|
||||
{
|
||||
int rday, rmon, ryear;
|
||||
double rut, jd;
|
||||
int gregflag = SE_JUL_CAL;
|
||||
if (c == 'g')
|
||||
gregflag = SE_GREG_CAL;
|
||||
rut = uttime; /* hours UT */
|
||||
jd = swe_julday(y, m, d, rut, gregflag);
|
||||
swe_revjul(jd, gregflag, &ryear, &rmon, &rday, &rut);
|
||||
*tjd = jd;
|
||||
if (rmon == m && rday == d && ryear == y) {
|
||||
return OK;
|
||||
} else {
|
||||
return ERR;
|
||||
}
|
||||
} /* end date_conversion */
|
||||
|
||||
/*************** swe_julday ********************************************
|
||||
* This function returns the absolute Julian day number (JD)
|
||||
* for a given calendar date.
|
||||
* The arguments are a calendar date: day, month, year as integers,
|
||||
* hour as double with decimal fraction.
|
||||
* If gregflag = SE_GREG_CAL (1), Gregorian calendar is assumed,
|
||||
* if gregflag = SE_JUL_CAL (0),Julian calendar is assumed.
|
||||
|
||||
The Julian day number is a system of numbering all days continously
|
||||
within the time range of known human history. It should be familiar
|
||||
to every astrological or astronomical programmer. The time variable
|
||||
in astronomical theories is usually expressed in Julian days or
|
||||
Julian centuries (36525 days per century) relative to some start day;
|
||||
the start day is called 'the epoch'.
|
||||
The Julian day number is a double representing the number of
|
||||
days since JD = 0.0 on 1 Jan -4712, 12:00 noon (in the Julian calendar).
|
||||
|
||||
Midnight has always a JD with fraction .5, because traditionally
|
||||
the astronomical day started at noon. This was practical because
|
||||
then there was no change of date during a night at the telescope.
|
||||
From this comes also the fact the noon ephemerides were printed
|
||||
before midnight ephemerides were introduced early in the 20th century.
|
||||
|
||||
NOTE: The Julian day number must not be confused with the Julian
|
||||
calendar system.
|
||||
|
||||
Be aware the we always use astronomical year numbering for the years
|
||||
before Christ, not the historical year numbering.
|
||||
Astronomical years are done with negative numbers, historical
|
||||
years with indicators BC or BCE (before common era).
|
||||
Year 0 (astronomical) = 1 BC
|
||||
year -1 (astronomical) = 2 BC
|
||||
etc.
|
||||
|
||||
Original author: Marc Pottenger, Los Angeles.
|
||||
with bug fix for year < -4711 15-aug-88 by Alois Treindl
|
||||
(The parameter sequence m,d,y still indicates the US origin,
|
||||
be careful because the similar function date_conversion() uses
|
||||
other parameter sequence and also Astrodienst relative juldate.)
|
||||
|
||||
References: Oliver Montenbruck, Grundlagen der Ephemeridenrechnung,
|
||||
Verlag Sterne und Weltraum (1987), p.49 ff
|
||||
|
||||
related functions: swe_revjul() reverse Julian day number: compute the
|
||||
calendar date from a given JD
|
||||
date_conversion() includes test for legal date values
|
||||
and notifies errors like 32 January.
|
||||
****************************************************************/
|
||||
|
||||
double CALL_CONV swe_julday(int year, int month, int day, double hour, int gregflag)
|
||||
{
|
||||
double jd;
|
||||
double u,u0,u1,u2;
|
||||
u = year;
|
||||
if (month < 3) u -=1;
|
||||
u0 = u + 4712.0;
|
||||
u1 = month + 1.0;
|
||||
if (u1 < 4) u1 += 12.0;
|
||||
jd = floor(u0*365.25)
|
||||
+ floor(30.6*u1+0.000001)
|
||||
+ day + hour/24.0 - 63.5;
|
||||
if (gregflag == SE_GREG_CAL) {
|
||||
u2 = floor(fabs(u) / 100) - floor(fabs(u) / 400);
|
||||
if (u < 0.0) u2 = -u2;
|
||||
jd = jd - u2 + 2;
|
||||
if ((u < 0.0) && (u/100 == floor(u/100)) && (u/400 != floor(u/400)))
|
||||
jd -=1;
|
||||
}
|
||||
return jd;
|
||||
}
|
||||
|
||||
/*** swe_revjul ******************************************************
|
||||
swe_revjul() is the inverse function to swe_julday(), see the description
|
||||
there.
|
||||
Arguments are julian day number, calendar flag (0=julian, 1=gregorian)
|
||||
return values are the calendar day, month, year and the hour of
|
||||
the day with decimal fraction (0 .. 23.999999).
|
||||
|
||||
Be aware the we use astronomical year numbering for the years
|
||||
before Christ, not the historical year numbering.
|
||||
Astronomical years are done with negative numbers, historical
|
||||
years with indicators BC or BCE (before common era).
|
||||
Year 0 (astronomical) = 1 BC historical year
|
||||
year -1 (astronomical) = 2 BC historical year
|
||||
year -234 (astronomical) = 235 BC historical year
|
||||
etc.
|
||||
|
||||
Original author Mark Pottenger, Los Angeles.
|
||||
with bug fix for year < -4711 16-aug-88 Alois Treindl
|
||||
*************************************************************************/
|
||||
void CALL_CONV swe_revjul (double jd, int gregflag,
|
||||
int *jyear, int *jmon, int *jday, double *jut)
|
||||
{
|
||||
double u0,u1,u2,u3,u4;
|
||||
u0 = jd + 32082.5;
|
||||
if (gregflag == SE_GREG_CAL) {
|
||||
u1 = u0 + floor (u0/36525.0) - floor (u0/146100.0) - 38.0;
|
||||
if (jd >= 1830691.5) u1 +=1;
|
||||
u0 = u0 + floor (u1/36525.0) - floor (u1/146100.0) - 38.0;
|
||||
}
|
||||
u2 = floor (u0 + 123.0);
|
||||
u3 = floor ( (u2 - 122.2) / 365.25);
|
||||
u4 = floor ( (u2 - floor (365.25 * u3) ) / 30.6001);
|
||||
*jmon = (int) (u4 - 1.0);
|
||||
if (*jmon > 12) *jmon -= 12;
|
||||
*jday = (int) (u2 - floor (365.25 * u3) - floor (30.6001 * u4));
|
||||
*jyear = (int) (u3 + floor ( (u4 - 2.0) / 12.0) - 4800);
|
||||
*jut = (jd - floor (jd + 0.5) + 0.5) * 24.0;
|
||||
}
|
||||
|
||||
/* transform local time to UTC or UTC to local time
|
||||
*
|
||||
* input
|
||||
* iyear ... dsec date and time
|
||||
* d_timezone timezone offset
|
||||
* output
|
||||
* iyear_out ... dsec_out
|
||||
*
|
||||
* For time zones east of Greenwich, d_timezone is positive.
|
||||
* For time zones west of Greenwich, d_timezone is negative.
|
||||
*
|
||||
* For conversion from local time to utc, use +d_timezone.
|
||||
* For conversion from utc to local time, use -d_timezone.
|
||||
*/
|
||||
void CALL_CONV swe_utc_time_zone(
|
||||
int32 iyear, int32 imonth, int32 iday,
|
||||
int32 ihour, int32 imin, double dsec,
|
||||
double d_timezone,
|
||||
int32 *iyear_out, int32 *imonth_out, int32 *iday_out,
|
||||
int32 *ihour_out, int32 *imin_out, double *dsec_out
|
||||
)
|
||||
{
|
||||
double tjd, d;
|
||||
AS_BOOL have_leapsec = FALSE;
|
||||
double dhour;
|
||||
if (dsec >= 60.0) {
|
||||
have_leapsec = TRUE;
|
||||
dsec -= 1.0;
|
||||
}
|
||||
dhour = ((double) ihour) + ((double) imin) / 60.0 + dsec / 3600.0;
|
||||
tjd = swe_julday(iyear, imonth, iday, 0, SE_GREG_CAL);
|
||||
dhour -= d_timezone;
|
||||
if (dhour < 0.0) {
|
||||
tjd -= 1.0;
|
||||
dhour += 24.0;
|
||||
}
|
||||
if (dhour >= 24.0) {
|
||||
tjd += 1.0;
|
||||
dhour -= 24.0;
|
||||
}
|
||||
swe_revjul(tjd + 0.001, SE_GREG_CAL, iyear_out, imonth_out, iday_out, &d);
|
||||
*ihour_out = (int) dhour;
|
||||
d = (dhour - (double) *ihour_out) * 60;
|
||||
*imin_out = (int) d;
|
||||
*dsec_out = (d - (double) *imin_out) * 60;
|
||||
if (have_leapsec)
|
||||
*dsec_out += 1.0;
|
||||
}
|
||||
|
||||
/*
|
||||
* functions for the handling of UTC
|
||||
*/
|
||||
|
||||
/* Leap seconds were inserted at the end of the following days:*/
|
||||
#define NLEAP_SECONDS 26
|
||||
#define NLEAP_SECONDS_SPACE 100
|
||||
static TLS int leap_seconds[NLEAP_SECONDS_SPACE] = {
|
||||
19720630,
|
||||
19721231,
|
||||
19731231,
|
||||
19741231,
|
||||
19751231,
|
||||
19761231,
|
||||
19771231,
|
||||
19781231,
|
||||
19791231,
|
||||
19810630,
|
||||
19820630,
|
||||
19830630,
|
||||
19850630,
|
||||
19871231,
|
||||
19891231,
|
||||
19901231,
|
||||
19920630,
|
||||
19930630,
|
||||
19940630,
|
||||
19951231,
|
||||
19970630,
|
||||
19981231,
|
||||
20051231,
|
||||
20081231,
|
||||
20120630,
|
||||
20150630,
|
||||
0 /* keep this 0 as end mark */
|
||||
};
|
||||
#define J1972 2441317.5
|
||||
#define NLEAP_INIT 10
|
||||
|
||||
/* Read additional leap second dates from external file, if given.
|
||||
*/
|
||||
static int init_leapsec(void)
|
||||
{
|
||||
FILE *fp;
|
||||
int ndat, ndat_last;
|
||||
int tabsiz = 0;
|
||||
int i;
|
||||
char s[AS_MAXCH];
|
||||
char *sp;
|
||||
if (!init_leapseconds_done) {
|
||||
init_leapseconds_done = TRUE;
|
||||
tabsiz = NLEAP_SECONDS;
|
||||
ndat_last = leap_seconds[NLEAP_SECONDS - 1];
|
||||
/* no error message if file is missing */
|
||||
if ((fp = swi_fopen(-1, "seleapsec.txt", swed.ephepath, NULL)) == NULL)
|
||||
return NLEAP_SECONDS;
|
||||
while(fgets(s, AS_MAXCH, fp) != NULL) {
|
||||
sp = s;
|
||||
while (*sp == ' ' || *sp == '\t') sp++;
|
||||
sp++;
|
||||
if (*sp == '#' || *sp == '\n')
|
||||
continue;
|
||||
ndat = atoi(s);
|
||||
if (ndat <= ndat_last)
|
||||
continue;
|
||||
/* table space is limited. no error msg, if exceeded */
|
||||
if (tabsiz >= NLEAP_SECONDS_SPACE)
|
||||
return tabsiz;
|
||||
leap_seconds[tabsiz] = ndat;
|
||||
tabsiz++;
|
||||
}
|
||||
if (tabsiz > NLEAP_SECONDS) leap_seconds[tabsiz] = 0; /* end mark */
|
||||
fclose(fp);
|
||||
return tabsiz;
|
||||
}
|
||||
/* find table size */
|
||||
tabsiz = 0;
|
||||
for (i = 0; i < NLEAP_SECONDS_SPACE; i++) {
|
||||
if (leap_seconds[i] == 0)
|
||||
break;
|
||||
else
|
||||
tabsiz++;
|
||||
}
|
||||
return tabsiz;
|
||||
}
|
||||
|
||||
/*
|
||||
* Input: Clock time UTC, year, month, day, hour, minute, second (decimal).
|
||||
* gregflag Calendar flag
|
||||
* serr error string
|
||||
* Output: An array of doubles:
|
||||
* dret[0] = Julian day number TT (ET)
|
||||
* dret[1] = Julian day number UT1
|
||||
*
|
||||
* Function returns OK or Error.
|
||||
*
|
||||
* - Before 1972, swe_utc_to_jd() treats its input time as UT1.
|
||||
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
|
||||
* UTC second was regularly changed, so that UTC remained very close to UT1.
|
||||
* - From 1972 on, input time is treated as UTC.
|
||||
* - If delta_t - nleap - 32.184 > 1, the input time is treated as UT1.
|
||||
* Note: Like this we avoid errors greater than 1 second in case that
|
||||
* the leap seconds table (or the Swiss Ephemeris version) is not updated
|
||||
* for a long time.
|
||||
*/
|
||||
int32 CALL_CONV swe_utc_to_jd(int32 iyear, int32 imonth, int32 iday, int32 ihour, int32 imin, double dsec, int32 gregflag, double *dret, char *serr)
|
||||
{
|
||||
double tjd_ut1, tjd_et, tjd_et_1972, dhour, d;
|
||||
int iyear2, imonth2, iday2;
|
||||
int i, j, ndat, nleap, tabsiz_nleap;
|
||||
/*
|
||||
* error handling: invalid iyear etc.
|
||||
*/
|
||||
tjd_ut1 = swe_julday(iyear, imonth, iday, 0, gregflag);
|
||||
swe_revjul(tjd_ut1, gregflag, &iyear2, &imonth2, &iday2, &d);
|
||||
if (iyear != iyear2 || imonth != imonth2 || iday != iday2) {
|
||||
if (serr != NULL)
|
||||
sprintf(serr, "invalid date: year = %d, month = %d, day = %d", iyear, imonth, iday);
|
||||
return ERR;
|
||||
}
|
||||
if (ihour < 0 || ihour > 23
|
||||
|| imin < 0 || imin > 59
|
||||
|| dsec < 0 || dsec >= 61
|
||||
|| (dsec >= 60 && (imin < 59 || ihour < 23 || tjd_ut1 < J1972))) {
|
||||
if (serr != NULL)
|
||||
sprintf(serr, "invalid time: %d:%d:%.2f", ihour, imin, dsec);
|
||||
return ERR;
|
||||
}
|
||||
dhour = (double) ihour + ((double) imin) / 60.0 + dsec / 3600.0;
|
||||
/*
|
||||
* before 1972, we treat input date as UT1
|
||||
*/
|
||||
if (tjd_ut1 < J1972) {
|
||||
dret[1] = swe_julday(iyear, imonth, iday, dhour, gregflag);
|
||||
dret[0] = dret[1] + swe_deltat_ex(dret[1], -1, NULL);
|
||||
return OK;
|
||||
}
|
||||
/*
|
||||
* if gregflag = Julian calendar, convert to gregorian calendar
|
||||
*/
|
||||
if (gregflag == SE_JUL_CAL) {
|
||||
gregflag = SE_GREG_CAL;
|
||||
swe_revjul(tjd_ut1, gregflag, &iyear, &imonth, &iday, &d);
|
||||
}
|
||||
/*
|
||||
* number of leap seconds since 1972:
|
||||
*/
|
||||
tabsiz_nleap = init_leapsec();
|
||||
nleap = NLEAP_INIT; /* initial difference between UTC and TAI in 1972 */
|
||||
ndat = iyear * 10000 + imonth * 100 + iday;
|
||||
for (i = 0; i < tabsiz_nleap; i++) {
|
||||
if (ndat <= leap_seconds[i])
|
||||
break;
|
||||
nleap++;
|
||||
}
|
||||
/*
|
||||
* For input dates > today:
|
||||
* If leap seconds table is not up to date, we'd better interpret the
|
||||
* input time as UT1, not as UTC. How do we find out?
|
||||
* Check, if delta_t - nleap - 32.184 > 0.9
|
||||
*/
|
||||
d = swe_deltat_ex(tjd_ut1, -1, NULL) * 86400.0;
|
||||
if (d - (double) nleap - 32.184 >= 1.0) {
|
||||
dret[1] = tjd_ut1 + dhour / 24.0;
|
||||
dret[0] = dret[1] + swe_deltat_ex(dret[1], -1, NULL);
|
||||
return OK;
|
||||
}
|
||||
/*
|
||||
* if input second is 60: is it a valid leap second ?
|
||||
*/
|
||||
if (dsec >= 60) {
|
||||
j = 0;
|
||||
for (i = 0; i < tabsiz_nleap; i++) {
|
||||
if (ndat == leap_seconds[i]) {
|
||||
j = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (j != 1) {
|
||||
if (serr != NULL)
|
||||
sprintf(serr, "invalid time (no leap second!): %d:%d:%.2f", ihour, imin, dsec);
|
||||
return ERR;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* convert UTC to ET and UT1
|
||||
*/
|
||||
/* the number of days between input date and 1 jan 1972: */
|
||||
d = tjd_ut1 - J1972;
|
||||
/* SI time since 1972, ignoring leap seconds: */
|
||||
d += (double) ihour / 24.0 + (double) imin / 1440.0 + dsec / 86400.0;
|
||||
/* ET (TT) */
|
||||
tjd_et_1972 = J1972 + (32.184 + NLEAP_INIT) / 86400.0;
|
||||
tjd_et = tjd_et_1972 + d + ((double) (nleap - NLEAP_INIT)) / 86400.0;
|
||||
d = swe_deltat_ex(tjd_et, -1, NULL);
|
||||
tjd_ut1 = tjd_et - swe_deltat_ex(tjd_et - d, -1, NULL);
|
||||
tjd_ut1 = tjd_et - swe_deltat_ex(tjd_ut1, -1, NULL);
|
||||
dret[0] = tjd_et;
|
||||
dret[1] = tjd_ut1;
|
||||
return OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Input: tjd_et Julian day number, terrestrial time (ephemeris time).
|
||||
* gregfalg Calendar flag
|
||||
* Output: UTC year, month, day, hour, minute, second (decimal).
|
||||
*
|
||||
* - Before 1 jan 1972 UTC, output UT1.
|
||||
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
|
||||
* UTC second was regularly changed, so that UTC remained very close to UT1.
|
||||
* - From 1972 on, output is UTC.
|
||||
* - If delta_t - nleap - 32.184 > 1, the output is UT1.
|
||||
* Note: Like this we avoid errors greater than 1 second in case that
|
||||
* the leap seconds table (or the Swiss Ephemeris version) has not been
|
||||
* updated for a long time.
|
||||
*/
|
||||
void CALL_CONV swe_jdet_to_utc(double tjd_et, int32 gregflag, int32 *iyear, int32 *imonth, int32 *iday, int32 *ihour, int32 *imin, double *dsec)
|
||||
{
|
||||
int i;
|
||||
int second_60 = 0;
|
||||
int iyear2, imonth2, iday2, nleap, ndat, tabsiz_nleap;
|
||||
double d, tjd, tjd_et_1972, tjd_ut, dret[10];
|
||||
/*
|
||||
* if tjd_et is before 1 jan 1972 UTC, return UT1
|
||||
*/
|
||||
tjd_et_1972 = J1972 + (32.184 + NLEAP_INIT) / 86400.0;
|
||||
d = swe_deltat_ex(tjd_et, -1, NULL);
|
||||
tjd_ut = tjd_et - swe_deltat_ex(tjd_et - d, -1, NULL);
|
||||
tjd_ut = tjd_et - swe_deltat_ex(tjd_ut, -1, NULL);
|
||||
if (tjd_et < tjd_et_1972) {
|
||||
swe_revjul(tjd_ut, gregflag, iyear, imonth, iday, &d);
|
||||
*ihour = (int32) d;
|
||||
d -= (double) *ihour;
|
||||
d *= 60;
|
||||
*imin = (int32) d;
|
||||
*dsec = (d - (double) *imin) * 60.0;
|
||||
return;
|
||||
}
|
||||
/*
|
||||
* minimum number of leap seconds since 1972; we may be missing one leap
|
||||
* second
|
||||
*/
|
||||
tabsiz_nleap = init_leapsec();
|
||||
swe_revjul(tjd_ut-1, SE_GREG_CAL, &iyear2, &imonth2, &iday2, &d);
|
||||
ndat = iyear2 * 10000 + imonth2 * 100 + iday2;
|
||||
nleap = 0;
|
||||
for (i = 0; i < tabsiz_nleap; i++) {
|
||||
if (ndat <= leap_seconds[i])
|
||||
break;
|
||||
nleap++;
|
||||
}
|
||||
/* date of potentially missing leapsecond */
|
||||
if (nleap < tabsiz_nleap) {
|
||||
i = leap_seconds[nleap];
|
||||
iyear2 = i / 10000;
|
||||
imonth2 = (i % 10000) / 100;;
|
||||
iday2 = i % 100;
|
||||
tjd = swe_julday(iyear2, imonth2, iday2, 0, SE_GREG_CAL);
|
||||
swe_revjul(tjd+1, SE_GREG_CAL, &iyear2, &imonth2, &iday2, &d);
|
||||
swe_utc_to_jd(iyear2,imonth2,iday2, 0, 0, 0, SE_GREG_CAL, dret, NULL);
|
||||
d = tjd_et - dret[0];
|
||||
if (d >= 0) {
|
||||
nleap++;
|
||||
} else if (d < 0 && d > -1.0/86400.0) {
|
||||
second_60 = 1;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* UTC, still unsure about one leap second
|
||||
*/
|
||||
tjd = J1972 + (tjd_et - tjd_et_1972) - ((double) nleap + second_60) / 86400.0;
|
||||
swe_revjul(tjd, SE_GREG_CAL, iyear, imonth, iday, &d);
|
||||
*ihour = (int32) d;
|
||||
d -= (double) *ihour;
|
||||
d *= 60;
|
||||
*imin = (int32) d;
|
||||
*dsec = (d - (double) *imin) * 60.0 + second_60;
|
||||
/*
|
||||
* For input dates > today:
|
||||
* If leap seconds table is not up to date, we'd better interpret the
|
||||
* input time as UT1, not as UTC. How do we find out?
|
||||
* Check, if delta_t - nleap - 32.184 > 0.9
|
||||
*/
|
||||
d = swe_deltat_ex(tjd_et, -1, NULL);
|
||||
d = swe_deltat_ex(tjd_et - d, -1, NULL);
|
||||
if (d * 86400.0 - (double) (nleap + NLEAP_INIT) - 32.184 >= 1.0) {
|
||||
swe_revjul(tjd_et - d, SE_GREG_CAL, iyear, imonth, iday, &d);
|
||||
*ihour = (int32) d;
|
||||
d -= (double) *ihour;
|
||||
d *= 60;
|
||||
*imin = (int32) d;
|
||||
*dsec = (d - (double) *imin) * 60.0;
|
||||
}
|
||||
if (gregflag == SE_JUL_CAL) {
|
||||
tjd = swe_julday(*iyear, *imonth, *iday, 0, SE_GREG_CAL);
|
||||
swe_revjul(tjd, gregflag, iyear, imonth, iday, &d);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Input: tjd_ut Julian day number, universal time (UT1).
|
||||
* gregfalg Calendar flag
|
||||
* Output: UTC year, month, day, hour, minute, second (decimal).
|
||||
*
|
||||
* - Before 1 jan 1972 UTC, output UT1.
|
||||
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
|
||||
* UTC second was regularly changed, so that UTC remained very close to UT1.
|
||||
* - From 1972 on, output is UTC.
|
||||
* - If delta_t - nleap - 32.184 > 1, the output is UT1.
|
||||
* Note: Like this we avoid errors greater than 1 second in case that
|
||||
* the leap seconds table (or the Swiss Ephemeris version) has not been
|
||||
* updated for a long time.
|
||||
*/
|
||||
void CALL_CONV swe_jdut1_to_utc(double tjd_ut, int32 gregflag, int32 *iyear, int32 *imonth, int32 *iday, int32 *ihour, int32 *imin, double *dsec)
|
||||
{
|
||||
double tjd_et = tjd_ut + swe_deltat_ex(tjd_ut, -1, NULL);
|
||||
swe_jdet_to_utc(tjd_et, gregflag, iyear, imonth, iday, ihour, imin, dsec);
|
||||
}
|
||||
|
@ -1,82 +0,0 @@
|
||||
/*********************************************************
|
||||
$Header: /home/dieter/sweph/RCS/swedate.h,v 1.74 2008/06/16 10:07:20 dieter Exp $
|
||||
version 15-feb-89 16:30
|
||||
*********************************************************/
|
||||
|
||||
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
|
||||
|
||||
License conditions
|
||||
------------------
|
||||
|
||||
This file is part of Swiss Ephemeris.
|
||||
|
||||
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
|
||||
or distributor accepts any responsibility for the consequences of using it,
|
||||
or for whether it serves any particular purpose or works at all, unless he
|
||||
or she says so in writing.
|
||||
|
||||
Swiss Ephemeris is made available by its authors under a dual licensing
|
||||
system. The software developer, who uses any part of Swiss Ephemeris
|
||||
in his or her software, must choose between one of the two license models,
|
||||
which are
|
||||
a) GNU public license version 2 or later
|
||||
b) Swiss Ephemeris Professional License
|
||||
|
||||
The choice must be made before the software developer distributes software
|
||||
containing parts of Swiss Ephemeris to others, and before any public
|
||||
service using the developed software is activated.
|
||||
|
||||
If the developer choses the GNU GPL software license, he or she must fulfill
|
||||
the conditions of that license, which includes the obligation to place his
|
||||
or her whole software project under the GNU GPL or a compatible license.
|
||||
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
||||
|
||||
If the developer choses the Swiss Ephemeris Professional license,
|
||||
he must follow the instructions as found in http://www.astro.com/swisseph/
|
||||
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
|
||||
and sign the corresponding license contract.
|
||||
|
||||
The License grants you the right to use, copy, modify and redistribute
|
||||
Swiss Ephemeris, but only under certain conditions described in the License.
|
||||
Among other things, the License requires that the copyright notices and
|
||||
this notice be preserved on all copies.
|
||||
|
||||
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
|
||||
|
||||
The authors of Swiss Ephemeris have no control or influence over any of
|
||||
the derived works, i.e. over software or services created by other
|
||||
programmers which use Swiss Ephemeris functions.
|
||||
|
||||
The names of the authors or of the copyright holder (Astrodienst) must not
|
||||
be used for promoting any software, product or service which uses or contains
|
||||
the Swiss Ephemeris. This copyright notice is the ONLY place where the
|
||||
names of the authors can legally appear, except in cases where they have
|
||||
given special permission in writing.
|
||||
|
||||
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
|
||||
for promoting such software, products or services.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifndef _SWEDLL_H
|
||||
extern EXP32 int swe_date_conversion (
|
||||
int y , int m , int d , /* year, month, day */
|
||||
double utime, /* universal time in hours (decimal) */
|
||||
char c, /* calendar g[regorian]|j[ulian]|a[stro = greg] */
|
||||
double *tgmt);
|
||||
|
||||
extern EXP32 double *swe_julday(
|
||||
int year, int month, int day, double hour,
|
||||
int gregflag);
|
||||
|
||||
extern EXP32 void swe_revjul (
|
||||
double jd,
|
||||
int gregflag,
|
||||
int *jyear, int *jmon, int *jday, double *jut);
|
||||
#endif
|
||||
#ifdef __cplusplus
|
||||
} /* extern C */
|
||||
#endif
|
@ -1,535 +0,0 @@
|
||||
/* SWISSEPH
|
||||
* $Header: /home/dieter/sweph/RCS/swedll.h,v 1.75 2009/04/08 07:19:08 dieter Exp $
|
||||
*
|
||||
* Windows DLL interface imports for the Astrodienst SWISSEPH package
|
||||
*
|
||||
|
||||
**************************************************************/
|
||||
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
|
||||
|
||||
License conditions
|
||||
------------------
|
||||
|
||||
This file is part of Swiss Ephemeris.
|
||||
|
||||
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
|
||||
or distributor accepts any responsibility for the consequences of using it,
|
||||
or for whether it serves any particular purpose or works at all, unless he
|
||||
or she says so in writing.
|
||||
|
||||
Swiss Ephemeris is made available by its authors under a dual licensing
|
||||
system. The software developer, who uses any part of Swiss Ephemeris
|
||||
in his or her software, must choose between one of the two license models,
|
||||
which are
|
||||
a) GNU public license version 2 or later
|
||||
b) Swiss Ephemeris Professional License
|
||||
|
||||
The choice must be made before the software developer distributes software
|
||||
containing parts of Swiss Ephemeris to others, and before any public
|
||||
service using the developed software is activated.
|
||||
|
||||
If the developer choses the GNU GPL software license, he or she must fulfill
|
||||
the conditions of that license, which includes the obligation to place his
|
||||
or her whole software project under the GNU GPL or a compatible license.
|
||||
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
||||
|
||||
If the developer choses the Swiss Ephemeris Professional license,
|
||||
he must follow the instructions as found in http://www.astro.com/swisseph/
|
||||