1769 lines
72 KiB
C
1769 lines
72 KiB
C
|
|
||
|
/*******************************************************
|
||
|
$Header: /home/dieter/sweph/RCS/swehouse.c,v 1.74 2008/06/16 10:07:20 dieter Exp $
|
||
|
module swehouse.c
|
||
|
house and (simple) aspect calculation
|
||
|
|
||
|
************************************************************/
|
||
|
|
||
|
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
|
||
|
|
||
|
License conditions
|
||
|
------------------
|
||
|
|
||
|
This file is part of Swiss Ephemeris.
|
||
|
|
||
|
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
|
||
|
or distributor accepts any responsibility for the consequences of using it,
|
||
|
or for whether it serves any particular purpose or works at all, unless he
|
||
|
or she says so in writing.
|
||
|
|
||
|
Swiss Ephemeris is made available by its authors under a dual licensing
|
||
|
system. The software developer, who uses any part of Swiss Ephemeris
|
||
|
in his or her software, must choose between one of the two license models,
|
||
|
which are
|
||
|
a) GNU public license version 2 or later
|
||
|
b) Swiss Ephemeris Professional License
|
||
|
|
||
|
The choice must be made before the software developer distributes software
|
||
|
containing parts of Swiss Ephemeris to others, and before any public
|
||
|
service using the developed software is activated.
|
||
|
|
||
|
If the developer choses the GNU GPL software license, he or she must fulfill
|
||
|
the conditions of that license, which includes the obligation to place his
|
||
|
or her whole software project under the GNU GPL or a compatible license.
|
||
|
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
||
|
|
||
|
If the developer choses the Swiss Ephemeris Professional license,
|
||
|
he must follow the instructions as found in http://www.astro.com/swisseph/
|
||
|
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
|
||
|
and sign the corresponding license contract.
|
||
|
|
||
|
The License grants you the right to use, copy, modify and redistribute
|
||
|
Swiss Ephemeris, but only under certain conditions described in the License.
|
||
|
Among other things, the License requires that the copyright notices and
|
||
|
this notice be preserved on all copies.
|
||
|
|
||
|
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
|
||
|
|
||
|
The authors of Swiss Ephemeris have no control or influence over any of
|
||
|
the derived works, i.e. over software or services created by other
|
||
|
programmers which use Swiss Ephemeris functions.
|
||
|
|
||
|
The names of the authors or of the copyright holder (Astrodienst) must not
|
||
|
be used for promoting any software, product or service which uses or contains
|
||
|
the Swiss Ephemeris. This copyright notice is the ONLY place where the
|
||
|
names of the authors can legally appear, except in cases where they have
|
||
|
given special permission in writing.
|
||
|
|
||
|
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
|
||
|
for promoting such software, products or services.
|
||
|
*/
|
||
|
|
||
|
#include "sweodef.h"
|
||
|
#include "swephexp.h"
|
||
|
#include "sweph.h"
|
||
|
#include "swephlib.h"
|
||
|
#include "swehouse.h"
|
||
|
#include <string.h>
|
||
|
|
||
|
#define MILLIARCSEC (1.0 / 3600000.0)
|
||
|
|
||
|
static double Asc1(double, double, double, double);
|
||
|
static double Asc2(double, double, double, double);
|
||
|
static int CalcH(double th, double fi, double ekl, char hsy,
|
||
|
int iteration_count, struct houses *hsp);
|
||
|
static int sidereal_houses_ecl_t0(double tjde, double armc, double eps,
|
||
|
double *nutlo, double lat, int hsys,
|
||
|
double *cusp, double *ascmc);
|
||
|
static int sidereal_houses_trad(double tjde, double armc, double eps,
|
||
|
double nutl, double lat, int hsys,
|
||
|
double *cusp, double *ascmc);
|
||
|
static int sidereal_houses_ssypl(double tjde, double armc, double eps,
|
||
|
double *nutlo, double lat, int hsys,
|
||
|
double *cusp, double *ascmc);
|
||
|
|
||
|
/* housasp.c
|
||
|
* cusps are returned in double cusp[13],
|
||
|
* or cusp[37] with house system 'G'.
|
||
|
* cusp[1...12] houses 1 - 12
|
||
|
* additional points are returned in ascmc[10].
|
||
|
* ascmc[0] = ascendant
|
||
|
* ascmc[1] = mc
|
||
|
* ascmc[2] = armc
|
||
|
* ascmc[3] = vertex
|
||
|
* ascmc[4] = equasc * "equatorial ascendant" *
|
||
|
* ascmc[5] = coasc1 * "co-ascendant" (W. Koch) *
|
||
|
* ascmc[6] = coasc2 * "co-ascendant" (M. Munkasey) *
|
||
|
* ascmc[7] = polasc * "polar ascendant" (M. Munkasey) *
|
||
|
*/
|
||
|
int FAR PASCAL_CONV
|
||
|
swe_houses(double tjd_ut, double geolat, double geolon, int hsys,
|
||
|
double *cusp, double *ascmc)
|
||
|
{
|
||
|
int i, retc = 0;
|
||
|
double armc, eps, nutlo[2];
|
||
|
double tjde = tjd_ut + swe_deltat(tjd_ut);
|
||
|
eps = swi_epsiln(tjde) * RADTODEG;
|
||
|
swi_nutation(tjde, nutlo);
|
||
|
for (i = 0; i < 2; i++)
|
||
|
nutlo[i] *= RADTODEG;
|
||
|
armc =
|
||
|
swe_degnorm(swe_sidtime0(tjd_ut, eps + nutlo[1], nutlo[0]) * 15 +
|
||
|
geolon);
|
||
|
#ifdef TRACE
|
||
|
swi_open_trace(NULL);
|
||
|
if (swi_trace_count <= TRACE_COUNT_MAX) {
|
||
|
if (swi_fp_trace_c != NULL) {
|
||
|
fputs("\n/*SWE_HOUSES*/\n", swi_fp_trace_c);
|
||
|
fprintf(swi_fp_trace_c, "#if 0\n");
|
||
|
fprintf(swi_fp_trace_c, " tjd = %.9f;", tjd_ut);
|
||
|
fprintf(swi_fp_trace_c, " geolon = %.9f;", geolon);
|
||
|
fprintf(swi_fp_trace_c, " geolat = %.9f;", geolat);
|
||
|
fprintf(swi_fp_trace_c, " hsys = %d;\n", hsys);
|
||
|
fprintf(swi_fp_trace_c,
|
||
|
" retc = swe_houses(tjd, geolat, geolon, hsys, cusp, ascmc);\n");
|
||
|
fprintf(swi_fp_trace_c,
|
||
|
" /* swe_houses calls swe_houses_armc as follows: */\n");
|
||
|
fprintf(swi_fp_trace_c, "#endif\n");
|
||
|
fflush(swi_fp_trace_c);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
retc = swe_houses_armc(armc, geolat, eps + nutlo[1], hsys, cusp, ascmc);
|
||
|
return retc;
|
||
|
}
|
||
|
|
||
|
/* housasp.c
|
||
|
* cusps are returned in double cusp[13],
|
||
|
* or cusp[37] with house system 'G'.
|
||
|
* cusp[1...12] houses 1 - 12
|
||
|
* additional points are returned in ascmc[10].
|
||
|
* ascmc[0] = ascendant
|
||
|
* ascmc[1] = mc
|
||
|
* ascmc[2] = armc
|
||
|
* ascmc[3] = vertex
|
||
|
* ascmc[4] = equasc * "equatorial ascendant" *
|
||
|
* ascmc[5] = coasc1 * "co-ascendant" (W. Koch) *
|
||
|
* ascmc[6] = coasc2 * "co-ascendant" (M. Munkasey) *
|
||
|
* ascmc[7] = polasc * "polar ascendant" (M. Munkasey) *
|
||
|
*/
|
||
|
int FAR PASCAL_CONV
|
||
|
swe_houses_ex(double tjd_ut, int32 iflag, double geolat, double geolon,
|
||
|
int hsys, double *cusp, double *ascmc)
|
||
|
{
|
||
|
int i, retc = 0;
|
||
|
double armc, eps_mean, nutlo[2];
|
||
|
double tjde = tjd_ut + swe_deltat(tjd_ut);
|
||
|
struct sid_data *sip = &swed.sidd;
|
||
|
int ito;
|
||
|
if (toupper(hsys) == 'G')
|
||
|
ito = 36;
|
||
|
else
|
||
|
ito = 12;
|
||
|
if ((iflag & SEFLG_SIDEREAL) && !swed.ayana_is_set)
|
||
|
swe_set_sid_mode(SE_SIDM_FAGAN_BRADLEY, 0, 0);
|
||
|
eps_mean = swi_epsiln(tjde) * RADTODEG;
|
||
|
swi_nutation(tjde, nutlo);
|
||
|
for (i = 0; i < 2; i++)
|
||
|
nutlo[i] *= RADTODEG;
|
||
|
#ifdef TRACE
|
||
|
swi_open_trace(NULL);
|
||
|
if (swi_trace_count <= TRACE_COUNT_MAX) {
|
||
|
if (swi_fp_trace_c != NULL) {
|
||
|
fputs("\n/*SWE_HOUSES_EX*/\n", swi_fp_trace_c);
|
||
|
fprintf(swi_fp_trace_c, "#if 0\n");
|
||
|
fprintf(swi_fp_trace_c, " tjd = %.9f;", tjd_ut);
|
||
|
fprintf(swi_fp_trace_c, " iflag = %d;\n", iflag);
|
||
|
fprintf(swi_fp_trace_c, " geolon = %.9f;", geolon);
|
||
|
fprintf(swi_fp_trace_c, " geolat = %.9f;", geolat);
|
||
|
fprintf(swi_fp_trace_c, " hsys = %d;\n", hsys);
|
||
|
fprintf(swi_fp_trace_c,
|
||
|
" retc = swe_houses_ex(tjd, iflag, geolat, geolon, hsys, cusp, ascmc);\n");
|
||
|
fprintf(swi_fp_trace_c,
|
||
|
" /* swe_houses calls swe_houses_armc as follows: */\n");
|
||
|
fprintf(swi_fp_trace_c, "#endif\n");
|
||
|
fflush(swi_fp_trace_c);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
/*houses_to_sidereal(tjde, geolat, hsys, eps, cusp, ascmc, iflag); */
|
||
|
armc =
|
||
|
swe_degnorm(swe_sidtime0(tjd_ut, eps_mean + nutlo[1], nutlo[0]) * 15 +
|
||
|
geolon);
|
||
|
if (iflag & SEFLG_SIDEREAL) {
|
||
|
if (sip->sid_mode & SE_SIDBIT_ECL_T0)
|
||
|
retc =
|
||
|
sidereal_houses_ecl_t0(tjde, armc, eps_mean + nutlo[1], nutlo,
|
||
|
geolat, hsys, cusp, ascmc);
|
||
|
else if (sip->sid_mode & SE_SIDBIT_SSY_PLANE)
|
||
|
retc =
|
||
|
sidereal_houses_ssypl(tjde, armc, eps_mean + nutlo[1], nutlo,
|
||
|
geolat, hsys, cusp, ascmc);
|
||
|
else
|
||
|
retc =
|
||
|
sidereal_houses_trad(tjde, armc, eps_mean + nutlo[1],
|
||
|
nutlo[0], geolat, hsys, cusp, ascmc);
|
||
|
}
|
||
|
else {
|
||
|
retc =
|
||
|
swe_houses_armc(armc, geolat, eps_mean + nutlo[1], hsys, cusp,
|
||
|
ascmc);
|
||
|
}
|
||
|
if (iflag & SEFLG_RADIANS) {
|
||
|
for (i = 1; i <= ito; i++)
|
||
|
cusp[i] *= DEGTORAD;
|
||
|
for (i = 0; i < SE_NASCMC; i++)
|
||
|
ascmc[i] *= DEGTORAD;
|
||
|
}
|
||
|
return retc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* houses to sidereal
|
||
|
* ------------------
|
||
|
* there are two methods:
|
||
|
* a) the traditional one
|
||
|
* houses are computed tropically, then nutation and the ayanamsa
|
||
|
* are subtracted.
|
||
|
* b) the projection on the ecliptic of t0
|
||
|
* The house computation is then as follows:
|
||
|
*
|
||
|
* Be t the birth date and t0 the epoch at which ayanamsa = 0.
|
||
|
* 1. Compute the angle between the mean ecliptic at t0 and
|
||
|
* the true equator at t.
|
||
|
* The intersection point of these two circles we call the
|
||
|
* "auxiliary vernal point", and the angle between them the
|
||
|
* "auxiliary obliquity".
|
||
|
* 2. Compute the distance of the auxiliary vernal point from the
|
||
|
* vernal point at t. (this is a section on the equator)
|
||
|
* 3. subtract this value from the armc of t = aux. armc.
|
||
|
* 4. Compute the axes and houses for this aux. armc and aux. obliquity.
|
||
|
* 5. Compute the distance between the auxiliary vernal point and the
|
||
|
* vernal point at t0 (this is the ayanamsa at t, measured on the
|
||
|
* ecliptic of t0)
|
||
|
* 6. subtract this distance from all house cusps.
|
||
|
* 7. subtract ayanamsa_t0 from all house cusps.
|
||
|
*/
|
||
|
static int
|
||
|
sidereal_houses_ecl_t0(double tjde, double armc, double eps, double *nutlo,
|
||
|
double lat, int hsys, double *cusp, double *ascmc)
|
||
|
{
|
||
|
int i, j, retc = OK;
|
||
|
double x[6], xvpx[6], x2[6], epst0, xnorm[6];
|
||
|
double rxy, rxyz, c2, epsx, sgn, fac, dvpx, dvpxe;
|
||
|
double armcx;
|
||
|
struct sid_data *sip = &swed.sidd;
|
||
|
int ito;
|
||
|
if (toupper(hsys) == 'G')
|
||
|
ito = 36;
|
||
|
else
|
||
|
ito = 12;
|
||
|
/* epsilon at t0 */
|
||
|
epst0 = swi_epsiln(sip->t0);
|
||
|
/* cartesian coordinates of an imaginary moving body on the
|
||
|
* the mean ecliptic of t0; we take the vernal point: */
|
||
|
x[0] = x[4] = 1;
|
||
|
x[1] = x[2] = x[3] = x[5] = 0;
|
||
|
/* to equator */
|
||
|
swi_coortrf(x, x, -epst0);
|
||
|
swi_coortrf(x + 3, x + 3, -epst0);
|
||
|
/* to tjd_et */
|
||
|
swi_precess(x, sip->t0, J_TO_J2000);
|
||
|
swi_precess(x, tjde, J2000_TO_J);
|
||
|
swi_precess(x + 3, sip->t0, J_TO_J2000);
|
||
|
swi_precess(x + 3, tjde, J2000_TO_J);
|
||
|
/* to true equator of tjd_et */
|
||
|
swi_coortrf(x, x, (eps - nutlo[1]) * DEGTORAD);
|
||
|
swi_coortrf(x + 3, x + 3, (eps - nutlo[1]) * DEGTORAD);
|
||
|
swi_cartpol_sp(x, x);
|
||
|
x[0] += nutlo[0] * DEGTORAD;
|
||
|
swi_polcart_sp(x, x);
|
||
|
swi_coortrf(x, x, -eps * DEGTORAD);
|
||
|
swi_coortrf(x + 3, x + 3, -eps * DEGTORAD);
|
||
|
/* now, we have the moving point precessed to tjd_et.
|
||
|
* next, we compute the auxiliary epsilon: */
|
||
|
swi_cross_prod(x, x + 3, xnorm);
|
||
|
rxy = xnorm[0] * xnorm[0] + xnorm[1] * xnorm[1];
|
||
|
c2 = (rxy + xnorm[2] * xnorm[2]);
|
||
|
rxyz = sqrt(c2);
|
||
|
rxy = sqrt(rxy);
|
||
|
epsx = asin(rxy / rxyz) * RADTODEG; /* 1a */
|
||
|
/* auxiliary vernal point */
|
||
|
if (fabs(x[5]) < 1e-15)
|
||
|
x[5] = 1e-15;
|
||
|
fac = x[2] / x[5];
|
||
|
sgn = x[5] / fabs(x[5]);
|
||
|
for (j = 0; j <= 2; j++)
|
||
|
xvpx[j] = (x[j] - fac * x[j + 3]) * sgn; /* 1b */
|
||
|
/* distance of the auxiliary vernal point from
|
||
|
* the zero point at tjd_et (a section on the equator): */
|
||
|
swi_cartpol(xvpx, x2);
|
||
|
dvpx = x2[0] * RADTODEG; /* 2 */
|
||
|
/* auxiliary armc */
|
||
|
armcx = swe_degnorm(armc - dvpx); /* 3 */
|
||
|
/* compute axes and houses: */
|
||
|
retc = swe_houses_armc(armcx, lat, epsx, hsys, cusp, ascmc); /* 4 */
|
||
|
/* distance between auxiliary vernal point and
|
||
|
* vernal point of t0 (a section on the sidereal plane) */
|
||
|
dvpxe = acos(swi_dot_prod_unit(x, xvpx)) * RADTODEG; /* 5 */
|
||
|
if (tjde < sip->t0)
|
||
|
dvpxe = -dvpxe;
|
||
|
for (i = 1; i <= ito; i++) /* 6, 7 */
|
||
|
cusp[i] = swe_degnorm(cusp[i] - dvpxe - sip->ayan_t0);
|
||
|
for (i = 0; i <= SE_NASCMC; i++)
|
||
|
ascmc[i] = swe_degnorm(ascmc[i] - dvpxe - sip->ayan_t0);
|
||
|
return retc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Be t the birth date and t0 the epoch at which ayanamsa = 0.
|
||
|
* 1. Compute the angle between the solar system rotation plane and
|
||
|
* the true equator at t.
|
||
|
* The intersection point of these two circles we call the
|
||
|
* "auxiliary vernal point", and the angle between them the
|
||
|
* "auxiliary obliquity".
|
||
|
* 2. Compute the distance of the auxiliary vernal point from the
|
||
|
* zero point at t. (this is a section on the equator)
|
||
|
* 3. subtract this value from the armc of t = aux. armc.
|
||
|
* 4. Compute the axes and houses for this aux. armc and aux. obliquity.
|
||
|
* 5. Compute the distance between the auxiliary vernal point at t
|
||
|
* and the zero point of the solar system plane J2000
|
||
|
* (a section measured on the solar system plane)
|
||
|
* 6. subtract this distance from all house cusps.
|
||
|
* 7. compute the ayanamsa of J2000 on the solar system plane,
|
||
|
* referred to t0
|
||
|
* 8. subtract ayanamsa_t0 from all house cusps.
|
||
|
* 9. subtract ayanamsa_2000 from all house cusps.
|
||
|
*/
|
||
|
static int
|
||
|
sidereal_houses_ssypl(double tjde, double armc, double eps, double *nutlo,
|
||
|
double lat, int hsys, double *cusp, double *ascmc)
|
||
|
{
|
||
|
int i, j, retc = OK;
|
||
|
double x[6], x0[6], xvpx[6], x2[6], xnorm[6];
|
||
|
double rxy, rxyz, c2, epsx, eps2000, sgn, fac, dvpx, dvpxe, x00;
|
||
|
double armcx;
|
||
|
struct sid_data *sip = &swed.sidd;
|
||
|
int ito;
|
||
|
if (toupper(hsys) == 'G')
|
||
|
ito = 36;
|
||
|
else
|
||
|
ito = 12;
|
||
|
eps2000 = swi_epsiln(J2000);
|
||
|
/* cartesian coordinates of the zero point on the
|
||
|
* the solar system rotation plane */
|
||
|
x[0] = x[4] = 1;
|
||
|
x[1] = x[2] = x[3] = x[5] = 0;
|
||
|
/* to ecliptic 2000 */
|
||
|
swi_coortrf(x, x, -SSY_PLANE_INCL);
|
||
|
swi_coortrf(x + 3, x + 3, -SSY_PLANE_INCL);
|
||
|
swi_cartpol_sp(x, x);
|
||
|
x[0] += SSY_PLANE_NODE_E2000;
|
||
|
swi_polcart_sp(x, x);
|
||
|
/* to equator 2000 */
|
||
|
swi_coortrf(x, x, -eps2000);
|
||
|
swi_coortrf(x + 3, x + 3, -eps2000);
|
||
|
/* to mean equator of t */
|
||
|
swi_precess(x, tjde, J2000_TO_J);
|
||
|
swi_precess(x + 3, tjde, J2000_TO_J);
|
||
|
/* to true equator of t */
|
||
|
swi_coortrf(x, x, (eps - nutlo[1]) * DEGTORAD);
|
||
|
swi_coortrf(x + 3, x + 3, (eps - nutlo[1]) * DEGTORAD);
|
||
|
swi_cartpol_sp(x, x);
|
||
|
x[0] += nutlo[0] * DEGTORAD;
|
||
|
swi_polcart_sp(x, x);
|
||
|
swi_coortrf(x, x, -eps * DEGTORAD);
|
||
|
swi_coortrf(x + 3, x + 3, -eps * DEGTORAD);
|
||
|
/* now, we have the moving point precessed to tjd_et.
|
||
|
* next, we compute the auxiliary epsilon: */
|
||
|
swi_cross_prod(x, x + 3, xnorm);
|
||
|
rxy = xnorm[0] * xnorm[0] + xnorm[1] * xnorm[1];
|
||
|
c2 = (rxy + xnorm[2] * xnorm[2]);
|
||
|
rxyz = sqrt(c2);
|
||
|
rxy = sqrt(rxy);
|
||
|
epsx = asin(rxy / rxyz) * RADTODEG; /* 1a */
|
||
|
/* auxiliary vernal point */
|
||
|
if (fabs(x[5]) < 1e-15)
|
||
|
x[5] = 1e-15;
|
||
|
fac = x[2] / x[5];
|
||
|
sgn = x[5] / fabs(x[5]);
|
||
|
for (j = 0; j <= 2; j++)
|
||
|
xvpx[j] = (x[j] - fac * x[j + 3]) * sgn; /* 1b */
|
||
|
/* distance of the auxiliary vernal point from
|
||
|
* mean vernal point at tjd_et (a section on the equator): */
|
||
|
swi_cartpol(xvpx, x2);
|
||
|
dvpx = x2[0] * RADTODEG; /* 2 */
|
||
|
/* auxiliary armc */
|
||
|
armcx = swe_degnorm(armc - dvpx); /* 3 */
|
||
|
/* compute axes and houses: */
|
||
|
retc = swe_houses_armc(armcx, lat, epsx, hsys, cusp, ascmc); /* 4 */
|
||
|
/* distance between the auxiliary vernal point at t and
|
||
|
* the sidereal zero point of 2000 at t
|
||
|
* (a section on the sidereal plane).
|
||
|
*/
|
||
|
dvpxe = acos(swi_dot_prod_unit(x, xvpx)) * RADTODEG; /* 5 */
|
||
|
/* (always positive for dates after 5400 bc) */
|
||
|
dvpxe -= SSY_PLANE_NODE * RADTODEG;
|
||
|
/* ayanamsa between t0 and J2000, measured on solar system plane: */
|
||
|
/* position of zero point of t0 */
|
||
|
x0[0] = 1;
|
||
|
x0[1] = x0[2] = 0;
|
||
|
/* zero point of t0 in J2000 system */
|
||
|
if (sip->t0 != J2000)
|
||
|
swi_precess(x0, sip->t0, J_TO_J2000);
|
||
|
/* zero point to ecliptic 2000 */
|
||
|
swi_coortrf(x0, x0, eps2000);
|
||
|
/* to solar system plane */
|
||
|
swi_cartpol(x0, x0);
|
||
|
x0[0] -= SSY_PLANE_NODE_E2000;
|
||
|
swi_polcart(x0, x0);
|
||
|
swi_coortrf(x0, x0, SSY_PLANE_INCL);
|
||
|
swi_cartpol(x0, x0);
|
||
|
x0[0] += SSY_PLANE_NODE;
|
||
|
x00 = x0[0] * RADTODEG; /* 7 */
|
||
|
for (i = 1; i <= ito; i++) /* 6, 8, 9 */
|
||
|
cusp[i] = swe_degnorm(cusp[i] - dvpxe - sip->ayan_t0 - x00);
|
||
|
for (i = 0; i <= SE_NASCMC; i++)
|
||
|
ascmc[i] = swe_degnorm(ascmc[i] - dvpxe - sip->ayan_t0 - x00);
|
||
|
return retc;
|
||
|
}
|
||
|
|
||
|
/* common simplified procedure */
|
||
|
static int
|
||
|
sidereal_houses_trad(double tjde, double armc, double eps, double nutl,
|
||
|
double lat, int hsys, double *cusp, double *ascmc)
|
||
|
{
|
||
|
int i, retc = OK;
|
||
|
double ay;
|
||
|
int ito;
|
||
|
int ihs = toupper(hsys);
|
||
|
int ihs2 = ihs;
|
||
|
ay = swe_get_ayanamsa(tjde);
|
||
|
if (ihs == 'G')
|
||
|
ito = 36;
|
||
|
else
|
||
|
ito = 12;
|
||
|
if (ihs == 'W') /* whole sign houses: treat as 'E' and fix later */
|
||
|
ihs2 = 'E';
|
||
|
retc = swe_houses_armc(armc, lat, eps, ihs2, cusp, ascmc);
|
||
|
for (i = 1; i <= ito; i++) {
|
||
|
cusp[i] = swe_degnorm(cusp[i] - ay - nutl);
|
||
|
if (ihs == 'W') /* whole sign houses */
|
||
|
cusp[i] -= fmod(cusp[i], 30);
|
||
|
}
|
||
|
for (i = 0; i < SE_NASCMC; i++) {
|
||
|
if (i == 2) /* armc */
|
||
|
continue;
|
||
|
ascmc[i] = swe_degnorm(ascmc[i] - ay - nutl);
|
||
|
}
|
||
|
return retc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* this function is required for very special computations
|
||
|
* where no date is given for house calculation,
|
||
|
* e.g. for composite charts or progressive charts.
|
||
|
* cusps are returned in double cusp[13],
|
||
|
* or cusp[37] with house system 'G'.
|
||
|
* cusp[1...12] houses 1 - 12
|
||
|
* additional points are returned in ascmc[10].
|
||
|
* ascmc[0] = ascendant
|
||
|
* ascmc[1] = mc
|
||
|
* ascmc[2] = armc
|
||
|
* ascmc[3] = vertex
|
||
|
* ascmc[4] = equasc * "equatorial ascendant" *
|
||
|
* ascmc[5] = coasc1 * "co-ascendant" (W. Koch) *
|
||
|
* ascmc[6] = coasc2 * "co-ascendant" (M. Munkasey) *
|
||
|
* ascmc[7] = polasc * "polar ascendant" (M. Munkasey) *
|
||
|
*/
|
||
|
int FAR PASCAL_CONV
|
||
|
swe_houses_armc(double armc, double geolat, double eps, int hsys,
|
||
|
double *cusp, double *ascmc)
|
||
|
{
|
||
|
struct houses h;
|
||
|
int i, retc = 0;
|
||
|
int ito;
|
||
|
if (toupper(hsys) == 'G')
|
||
|
ito = 36;
|
||
|
else
|
||
|
ito = 12;
|
||
|
armc = swe_degnorm(armc);
|
||
|
retc = CalcH(armc, geolat, eps, (char)hsys, 2, &h);
|
||
|
cusp[0] = 0;
|
||
|
for (i = 1; i <= ito; i++) {
|
||
|
cusp[i] = h.cusp[i];
|
||
|
}
|
||
|
ascmc[0] = h.ac; /* Asc */
|
||
|
ascmc[1] = h.mc; /* Mid */
|
||
|
ascmc[2] = armc;
|
||
|
ascmc[3] = h.vertex;
|
||
|
ascmc[4] = h.equasc;
|
||
|
ascmc[5] = h.coasc1; /* "co-ascendant" (W. Koch) */
|
||
|
ascmc[6] = h.coasc2; /* "co-ascendant" (M. Munkasey) */
|
||
|
ascmc[7] = h.polasc; /* "polar ascendant" (M. Munkasey) */
|
||
|
for (i = SE_NASCMC; i < 10; i++)
|
||
|
ascmc[i] = 0;
|
||
|
#ifdef TRACE
|
||
|
swi_open_trace(NULL);
|
||
|
if (swi_trace_count <= TRACE_COUNT_MAX) {
|
||
|
if (swi_fp_trace_c != NULL) {
|
||
|
fputs("\n/*SWE_HOUSES_ARMC*/\n", swi_fp_trace_c);
|
||
|
fprintf(swi_fp_trace_c, " armc = %.9f;", armc);
|
||
|
fprintf(swi_fp_trace_c, " geolat = %.9f;", geolat);
|
||
|
fprintf(swi_fp_trace_c, " eps = %.9f;", eps);
|
||
|
fprintf(swi_fp_trace_c, " hsys = %d;\n", hsys);
|
||
|
fprintf(swi_fp_trace_c,
|
||
|
" retc = swe_houses_armc(armc, geolat, eps, hsys, cusp, ascmc);\n");
|
||
|
fputs(" printf(\"swe_houses_armc: %f\\t%f\\t%f\\t%c\\t\\n\", ",
|
||
|
swi_fp_trace_c);
|
||
|
fputs(" armc, geolat, eps, hsys);\n", swi_fp_trace_c);
|
||
|
fputs(" printf(\"retc = %d\\n\", retc);\n", swi_fp_trace_c);
|
||
|
fputs(" printf(\"cusp:\\n\");\n", swi_fp_trace_c);
|
||
|
fputs(" for (i = 0; i < 12; i++)\n", swi_fp_trace_c);
|
||
|
fputs(" printf(\" %d\\t%f\\n\", i, cusp[i]);\n",
|
||
|
swi_fp_trace_c);
|
||
|
fputs(" printf(\"ascmc:\\n\");\n", swi_fp_trace_c);
|
||
|
fputs(" for (i = 0; i < 10; i++)\n", swi_fp_trace_c);
|
||
|
fputs(" printf(\" %d\\t%f\\n\", i, ascmc[i]);\n",
|
||
|
swi_fp_trace_c);
|
||
|
fflush(swi_fp_trace_c);
|
||
|
}
|
||
|
if (swi_fp_trace_out != NULL) {
|
||
|
fprintf(swi_fp_trace_out, "swe_houses_armc: %f\t%f\t%f\t%c\t\n",
|
||
|
armc, geolat, eps, hsys);
|
||
|
fprintf(swi_fp_trace_out, "retc = %d\n", retc);
|
||
|
fputs("cusp:\n", swi_fp_trace_out);
|
||
|
for (i = 0; i < 12; i++)
|
||
|
fprintf(swi_fp_trace_out, " %d\t%f\n", i, cusp[i]);
|
||
|
fputs("ascmc:\n", swi_fp_trace_out);
|
||
|
for (i = 0; i < 10; i++)
|
||
|
fprintf(swi_fp_trace_out, " %d\t%f\n", i, ascmc[i]);
|
||
|
fflush(swi_fp_trace_out);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
#if 0
|
||
|
|
||
|
/* for test of swe_house_pos().
|
||
|
* 1st house will be 0, second 30, etc. */
|
||
|
for (i = 1; i <= 12; i++) {
|
||
|
double x[6];
|
||
|
x[0] = cusp[i];
|
||
|
x[1] = 0;
|
||
|
x[2] = 1;
|
||
|
cusp[i] = (swe_house_pos(armc, geolat, eps, hsys, x, NULL) - 1) * 30;
|
||
|
}
|
||
|
#endif
|
||
|
return retc;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
CalcH(double th, double fi, double ekl, char hsy, int iteration_count,
|
||
|
struct houses *hsp)
|
||
|
|
||
|
/* *********************************************************
|
||
|
* Arguments: th = sidereal time (angle 0..360 degrees
|
||
|
* hsy = letter code for house system;
|
||
|
* A equal
|
||
|
* E equal
|
||
|
* B Alcabitius
|
||
|
* C Campanus
|
||
|
* G 36 Gauquelin sectors
|
||
|
* H horizon / azimut
|
||
|
* K Koch
|
||
|
* M Morinus
|
||
|
* O Porphyry
|
||
|
* P Placidus
|
||
|
* R Regiomontanus
|
||
|
* T Polich/Page ("topocentric")
|
||
|
* V equal Vehlow
|
||
|
* W equal, whole sign
|
||
|
* X axial rotation system/ Meridian houses
|
||
|
* U Krusinski-Pisa-Goelzer
|
||
|
* fi = geographic latitude
|
||
|
* ekl = obliquity of the ecliptic
|
||
|
* iteration_count = number of iterations in
|
||
|
* Placidus calculation; can be 1 or 2.
|
||
|
* *********************************************************
|
||
|
* Koch and Placidus don't work in the polar circle.
|
||
|
* We swap MC/IC so that MC is always before AC in the zodiac
|
||
|
* We than divide the quadrants into 3 equal parts.
|
||
|
* *********************************************************
|
||
|
* All angles are expressed in degrees.
|
||
|
* Special trigonometric functions sind, cosd etc. are
|
||
|
* implemented for arguments in degrees.
|
||
|
***********************************************************/
|
||
|
{
|
||
|
double tane, tanfi, cosfi, tant, sina, cosa, th2;
|
||
|
double a, c, f, fh1, fh2, xh1, xh2, rectasc, ad3, acmc, vemc;
|
||
|
int i, ih, ih2, retc = OK;
|
||
|
double sine, cose;
|
||
|
double x[3], krHorizonLon; /* BK 14.02.2006 */
|
||
|
cose = cosd(ekl);
|
||
|
sine = sind(ekl);
|
||
|
tane = tand(ekl);
|
||
|
/* north and south poles */
|
||
|
if (fabs(fabs(fi) - 90) < VERY_SMALL) {
|
||
|
if (fi < 0)
|
||
|
fi = -90 + VERY_SMALL;
|
||
|
else
|
||
|
fi = 90 - VERY_SMALL;
|
||
|
}
|
||
|
tanfi = tand(fi);
|
||
|
/* mc */
|
||
|
if (fabs(th - 90) > VERY_SMALL && fabs(th - 270) > VERY_SMALL) {
|
||
|
tant = tand(th);
|
||
|
hsp->mc = atand(tant / cose);
|
||
|
if (th > 90 && th <= 270)
|
||
|
hsp->mc = swe_degnorm(hsp->mc + 180);
|
||
|
}
|
||
|
else {
|
||
|
if (fabs(th - 90) <= VERY_SMALL)
|
||
|
hsp->mc = 90;
|
||
|
else
|
||
|
hsp->mc = 270;
|
||
|
} /* if */
|
||
|
hsp->mc = swe_degnorm(hsp->mc);
|
||
|
/* ascendant */
|
||
|
hsp->ac = Asc1(th + 90, fi, sine, cose);
|
||
|
hsp->cusp[1] = hsp->ac;
|
||
|
hsp->cusp[10] = hsp->mc;
|
||
|
if (hsy > 95)
|
||
|
hsy = (char)(hsy - 32); /* translate into capital letter */
|
||
|
switch (hsy) {
|
||
|
case 'A': /* equal houses */
|
||
|
case 'E':
|
||
|
/*
|
||
|
* within polar circle we swap AC/DC if AC is on wrong side
|
||
|
*/
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->cusp[1] = hsp->ac;
|
||
|
}
|
||
|
for (i = 2; i <= 12; i++)
|
||
|
hsp->cusp[i] = swe_degnorm(hsp->cusp[1] + (i - 1) * 30);
|
||
|
break;
|
||
|
case 'C': /* Campanus houses and Horizon or Azimut system */
|
||
|
case 'H':
|
||
|
if (hsy == 'H') {
|
||
|
if (fi > 0)
|
||
|
fi = 90 - fi;
|
||
|
else
|
||
|
fi = -90 - fi;
|
||
|
/* equator */
|
||
|
if (fabs(fabs(fi) - 90) < VERY_SMALL) {
|
||
|
if (fi < 0)
|
||
|
fi = -90 + VERY_SMALL;
|
||
|
else
|
||
|
fi = 90 - VERY_SMALL;
|
||
|
}
|
||
|
th = swe_degnorm(th + 180);
|
||
|
}
|
||
|
fh1 = asind(sind(fi) / 2);
|
||
|
fh2 = asind(sqrt(3.0) / 2 * sind(fi));
|
||
|
cosfi = cosd(fi);
|
||
|
if (fabs(cosfi) == 0) { /* '==' should be save! */
|
||
|
if (fi > 0)
|
||
|
xh1 = xh2 = 90; /* cosfi = VERY_SMALL; */
|
||
|
else
|
||
|
xh1 = xh2 = 270; /* cosfi = -VERY_SMALL; */
|
||
|
}
|
||
|
else {
|
||
|
xh1 = atand(sqrt(3.0) / cosfi);
|
||
|
xh2 = atand(1 / sqrt(3.0) / cosfi);
|
||
|
}
|
||
|
hsp->cusp[11] = Asc1(th + 90 - xh1, fh1, sine, cose);
|
||
|
hsp->cusp[12] = Asc1(th + 90 - xh2, fh2, sine, cose);
|
||
|
if (hsy == 'H')
|
||
|
hsp->cusp[1] = Asc1(th + 90, fi, sine, cose);
|
||
|
hsp->cusp[2] = Asc1(th + 90 + xh2, fh2, sine, cose);
|
||
|
hsp->cusp[3] = Asc1(th + 90 + xh1, fh1, sine, cose);
|
||
|
/* within polar circle, when mc sinks below horizon and
|
||
|
* ascendant changes to western hemisphere, all cusps
|
||
|
* must be added 180 degrees.
|
||
|
* houses will be in clockwise direction */
|
||
|
if (fabs(fi) >= 90 - ekl) { /* within polar circle */
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->mc = swe_degnorm(hsp->mc + 180);
|
||
|
for (i = 1; i <= 12; i++)
|
||
|
hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
|
||
|
}
|
||
|
}
|
||
|
if (hsy == 'H') {
|
||
|
for (i = 1; i <= 3; i++)
|
||
|
hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
|
||
|
for (i = 11; i <= 12; i++)
|
||
|
hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
|
||
|
/* restore fi and th */
|
||
|
if (fi > 0)
|
||
|
fi = 90 - fi;
|
||
|
else
|
||
|
fi = -90 - fi;
|
||
|
th = swe_degnorm(th + 180);
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case 'K': /* Koch houses */
|
||
|
if (fabs(fi) >= 90 - ekl) { /* within polar circle */
|
||
|
retc = ERR;
|
||
|
goto porphyry;
|
||
|
}
|
||
|
sina = sind(hsp->mc) * sine / cosd(fi);
|
||
|
if (sina > 1)
|
||
|
sina = 1;
|
||
|
if (sina < -1)
|
||
|
sina = -1;
|
||
|
cosa = sqrt(1 - sina * sina); /* always >> 0 */
|
||
|
c = atand(tanfi / cosa);
|
||
|
ad3 = asind(sind(c) * sina) / 3.0;
|
||
|
hsp->cusp[11] = Asc1(th + 30 - 2 * ad3, fi, sine, cose);
|
||
|
hsp->cusp[12] = Asc1(th + 60 - ad3, fi, sine, cose);
|
||
|
hsp->cusp[2] = Asc1(th + 120 + ad3, fi, sine, cose);
|
||
|
hsp->cusp[3] = Asc1(th + 150 + 2 * ad3, fi, sine, cose);
|
||
|
break;
|
||
|
case 'O': /* Porphyry houses */
|
||
|
porphyry:
|
||
|
/*
|
||
|
* within polar circle we swap AC/DC if AC is on wrong side
|
||
|
*/
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->cusp[1] = hsp->ac;
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
}
|
||
|
hsp->cusp[2] = swe_degnorm(hsp->ac + (180 - acmc) / 3);
|
||
|
hsp->cusp[3] = swe_degnorm(hsp->ac + (180 - acmc) / 3 * 2);
|
||
|
hsp->cusp[11] = swe_degnorm(hsp->mc + acmc / 3);
|
||
|
hsp->cusp[12] = swe_degnorm(hsp->mc + acmc / 3 * 2);
|
||
|
break;
|
||
|
case 'R': /* Regiomontanus houses */
|
||
|
fh1 = atand(tanfi * 0.5);
|
||
|
fh2 = atand(tanfi * cosd(30));
|
||
|
hsp->cusp[11] = Asc1(30 + th, fh1, sine, cose);
|
||
|
hsp->cusp[12] = Asc1(60 + th, fh2, sine, cose);
|
||
|
hsp->cusp[2] = Asc1(120 + th, fh2, sine, cose);
|
||
|
hsp->cusp[3] = Asc1(150 + th, fh1, sine, cose);
|
||
|
/* within polar circle, when mc sinks below horizon and
|
||
|
* ascendant changes to western hemisphere, all cusps
|
||
|
* must be added 180 degrees.
|
||
|
* houses will be in clockwise direction */
|
||
|
if (fabs(fi) >= 90 - ekl) { /* within polar circle */
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->mc = swe_degnorm(hsp->mc + 180);
|
||
|
for (i = 1; i <= 12; i++)
|
||
|
hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case 'T': /* 'topocentric' houses */
|
||
|
fh1 = atand(tanfi / 3.0);
|
||
|
fh2 = atand(tanfi * 2.0 / 3.0);
|
||
|
hsp->cusp[11] = Asc1(30 + th, fh1, sine, cose);
|
||
|
hsp->cusp[12] = Asc1(60 + th, fh2, sine, cose);
|
||
|
hsp->cusp[2] = Asc1(120 + th, fh2, sine, cose);
|
||
|
hsp->cusp[3] = Asc1(150 + th, fh1, sine, cose);
|
||
|
/* within polar circle, when mc sinks below horizon and
|
||
|
* ascendant changes to western hemisphere, all cusps
|
||
|
* must be added 180 degrees.
|
||
|
* houses will be in clockwise direction */
|
||
|
if (fabs(fi) >= 90 - ekl) { /* within polar circle */
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->mc = swe_degnorm(hsp->mc + 180);
|
||
|
for (i = 1; i <= 12; i++)
|
||
|
hsp->cusp[i] = swe_degnorm(hsp->cusp[i] + 180);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case 'V': /* equal houses after Vehlow */
|
||
|
/*
|
||
|
* within polar circle we swap AC/DC if AC is on wrong side
|
||
|
*/
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->cusp[1] = hsp->ac;
|
||
|
}
|
||
|
hsp->cusp[1] = swe_degnorm(hsp->ac - 15);
|
||
|
for (i = 2; i <= 12; i++)
|
||
|
hsp->cusp[i] = swe_degnorm(hsp->cusp[1] + (i - 1) * 30);
|
||
|
break;
|
||
|
case 'W': /* equal, whole-sign houses */
|
||
|
/*
|
||
|
* within polar circle we swap AC/DC if AC is on wrong side
|
||
|
*/
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->cusp[1] = hsp->ac;
|
||
|
}
|
||
|
hsp->cusp[1] = hsp->ac - fmod(hsp->ac, 30);
|
||
|
for (i = 2; i <= 12; i++)
|
||
|
hsp->cusp[i] = swe_degnorm(hsp->cusp[1] + (i - 1) * 30);
|
||
|
break;
|
||
|
case 'X':{
|
||
|
/*
|
||
|
* Meridian or axial rotation system:
|
||
|
* ecliptic points whose rectascensions
|
||
|
* are armc + n * 30
|
||
|
*/
|
||
|
int j;
|
||
|
double a = th;
|
||
|
for (i = 1; i <= 12; i++) {
|
||
|
j = i + 10;
|
||
|
if (j > 12)
|
||
|
j -= 12;
|
||
|
a = swe_degnorm(a + 30);
|
||
|
if (fabs(a - 90) > VERY_SMALL
|
||
|
&& fabs(a - 270) > VERY_SMALL) {
|
||
|
tant = tand(a);
|
||
|
hsp->cusp[j] = atand(tant / cose);
|
||
|
if (a > 90 && a <= 270)
|
||
|
hsp->cusp[j] = swe_degnorm(hsp->cusp[j] + 180);
|
||
|
}
|
||
|
else {
|
||
|
if (fabs(a - 90) <= VERY_SMALL)
|
||
|
hsp->cusp[j] = 90;
|
||
|
else
|
||
|
hsp->cusp[j] = 270;
|
||
|
} /* if */
|
||
|
hsp->cusp[j] = swe_degnorm(hsp->cusp[j]);
|
||
|
}
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case 'M':{
|
||
|
/*
|
||
|
* Morinus
|
||
|
* points of the equator (armc + n * 30) are transformed
|
||
|
* into the ecliptic coordinate system
|
||
|
*/
|
||
|
int j;
|
||
|
double a = th;
|
||
|
double x[3];
|
||
|
for (i = 1; i <= 12; i++) {
|
||
|
j = i + 10;
|
||
|
if (j > 12)
|
||
|
j -= 12;
|
||
|
a = swe_degnorm(a + 30);
|
||
|
x[0] = a;
|
||
|
x[1] = 0;
|
||
|
swe_cotrans(x, x, ekl);
|
||
|
hsp->cusp[j] = x[0];
|
||
|
}
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case 'B':{ /* Alcabitius */
|
||
|
/* created by Alois 17-sep-2000, followed example in Matrix
|
||
|
* electrical library. The code reproduces the example!
|
||
|
* See http://www.astro.com/cgi/adict.cgi query: alcabitius
|
||
|
* in the resuotl page, see program code example.
|
||
|
* I think the Alcabitius code in Walter Pullen's Astrolog 5.40
|
||
|
* is wrong, because he remains in RA and forgets the transform to
|
||
|
* the ecliptic. */
|
||
|
double dek, r, sna, sda, sn3, sd3;
|
||
|
#if FALSE
|
||
|
if (fabs(fi) >= 90 - ekl) { /* within polar circle */
|
||
|
retc = ERR;
|
||
|
goto porphyry;
|
||
|
}
|
||
|
#endif
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->cusp[1] = hsp->ac;
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
}
|
||
|
dek = asind(sind(hsp->ac) * sine); /* declination of Ascendant */
|
||
|
/* must treat the case fi == 90 or -90 */
|
||
|
r = -tanfi * tand(dek);
|
||
|
/* must treat the case of abs(r) > 1; probably does not happen
|
||
|
* because dek becomes smaller when fi is large, as ac is close to
|
||
|
* zero Aries/Libra in that case.
|
||
|
*/
|
||
|
sda = acos(r) * RADTODEG; /* semidiurnal arc, measured on equator */
|
||
|
sna = 180 - sda; /* complement, seminocturnal arc */
|
||
|
sd3 = sda / 3;
|
||
|
sn3 = sna / 3;
|
||
|
rectasc = swe_degnorm(th + sd3); /* cusp 11 */
|
||
|
/* project rectasc onto eclipitic with pole height 0, i.e. along the
|
||
|
* declination circle */
|
||
|
hsp->cusp[11] = Asc1(rectasc, 0, sine, cose);
|
||
|
rectasc = swe_degnorm(th + 2 * sd3); /* cusp 12 */
|
||
|
hsp->cusp[12] = Asc1(rectasc, 0, sine, cose);
|
||
|
rectasc = swe_degnorm(th + 180 - 2 * sn3); /* cusp 2 */
|
||
|
hsp->cusp[2] = Asc1(rectasc, 0, sine, cose);
|
||
|
rectasc = swe_degnorm(th + 180 - sn3); /* cusp 3 */
|
||
|
hsp->cusp[3] = Asc1(rectasc, 0, sine, cose);
|
||
|
}
|
||
|
break;
|
||
|
case 'G': /* 36 Gauquelin sectors */
|
||
|
for (i = 1; i <= 36; i++) {
|
||
|
hsp->cusp[i] = 0;
|
||
|
}
|
||
|
if (fabs(fi) >= 90 - ekl) { /* within polar circle */
|
||
|
retc = ERR;
|
||
|
goto porphyry;
|
||
|
}
|
||
|
|
||
|
/*************** forth/second quarter ***************/
|
||
|
/* note: Gauquelin sectors are counted in clockwise direction */
|
||
|
a = asind(tand(fi) * tane);
|
||
|
for (ih = 2; ih <= 9; ih++) {
|
||
|
ih2 = 10 - ih;
|
||
|
fh1 = atand(sind(a * ih2 / 9) / tane);
|
||
|
rectasc = swe_degnorm((90 / 9) * ih2 + th);
|
||
|
tant =
|
||
|
tand(asind(sine * sind(Asc1(rectasc, fh1, sine, cose))));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[ih] = rectasc;
|
||
|
}
|
||
|
else {
|
||
|
/* pole height */
|
||
|
f = atand(sind(asind(tanfi * tant) * ih2 / 9) / tant);
|
||
|
hsp->cusp[ih] = Asc1(rectasc, f, sine, cose);
|
||
|
for (i = 1; i <= iteration_count; i++) {
|
||
|
tant = tand(asind(sine * sind(hsp->cusp[ih])));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[ih] = rectasc;
|
||
|
break;
|
||
|
}
|
||
|
/* pole height */
|
||
|
f = atand(sind(asind(tanfi * tant) * ih2 / 9) / tant);
|
||
|
hsp->cusp[ih] = Asc1(rectasc, f, sine, cose);
|
||
|
}
|
||
|
}
|
||
|
hsp->cusp[ih + 18] = swe_degnorm(hsp->cusp[ih] + 180);
|
||
|
}
|
||
|
|
||
|
/*************** first/third quarter ***************/
|
||
|
for (ih = 29; ih <= 36; ih++) {
|
||
|
ih2 = ih - 28;
|
||
|
fh1 = atand(sind(a * ih2 / 9) / tane);
|
||
|
rectasc = swe_degnorm(180 - ih2 * 90 / 9 + th);
|
||
|
tant =
|
||
|
tand(asind(sine * sind(Asc1(rectasc, fh1, sine, cose))));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[ih] = rectasc;
|
||
|
}
|
||
|
else {
|
||
|
f = atand(sind(asind(tanfi * tant) * ih2 / 9) / tant);
|
||
|
/* pole height */
|
||
|
hsp->cusp[ih] = Asc1(rectasc, f, sine, cose);
|
||
|
for (i = 1; i <= iteration_count; i++) {
|
||
|
tant = tand(asind(sine * sind(hsp->cusp[ih])));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[ih] = rectasc;
|
||
|
break;
|
||
|
}
|
||
|
f = atand(sind(asind(tanfi * tant) * ih2 / 9) / tant);
|
||
|
/* pole height */
|
||
|
hsp->cusp[ih] = Asc1(rectasc, f, sine, cose);
|
||
|
}
|
||
|
}
|
||
|
hsp->cusp[ih - 18] = swe_degnorm(hsp->cusp[ih] + 180);
|
||
|
}
|
||
|
hsp->cusp[1] = hsp->ac;
|
||
|
hsp->cusp[10] = hsp->mc;
|
||
|
hsp->cusp[19] = swe_degnorm(hsp->ac + 180);
|
||
|
hsp->cusp[28] = swe_degnorm(hsp->mc + 180);
|
||
|
break;
|
||
|
case 'U': /* Krusinski-Pisa */
|
||
|
/*
|
||
|
* The following code was written by Bogdan Krusinski in 2006.
|
||
|
* bogdan@astrologia.pl
|
||
|
*
|
||
|
* Definition:
|
||
|
* "Krusinski - house system based on the great circle passing through
|
||
|
* ascendant and zenith. This circle is divided into 12 equal parts
|
||
|
* (1st cusp is ascendent, 10th cusp is zenith), then the resulting
|
||
|
* points are projected onto the ecliptic through meridian circles.
|
||
|
* The house cusps in space are half-circles perpendicular to the equator
|
||
|
* and running from the north to the south celestial pole through the
|
||
|
* resulting cusp points on the house circle. The points where they
|
||
|
* cross the ecliptic mark the ecliptic house cusps."
|
||
|
*
|
||
|
* Description of the algorithm:
|
||
|
* Transform into great circle running through Asc and zenit (where arc
|
||
|
* between Asc and zenith is always 90 deg), and then return with
|
||
|
* house cusps into ecliptic. Eg. solve trigonometrical triangle
|
||
|
* with three transformations and two rotations starting from ecliptic.
|
||
|
* House cusps in space are meridian circles.
|
||
|
*
|
||
|
* Notes:
|
||
|
* 1. In this definition we assume MC on ecliptic as point where
|
||
|
* half-meridian (from north to south pole) cuts ecliptic,
|
||
|
* so MC may be below horizon in arctic regions.
|
||
|
* 2. Houses could be calculated in all latitudes except the poles
|
||
|
* themselves (-90,90) and points on arctic circle in cases where
|
||
|
* ecliptic is equal to horizon and then ascendant is undefined.
|
||
|
* But ascendant when 'horizon=ecliptic' could be deduced as limes
|
||
|
* from both sides of that point and houses with that provision can
|
||
|
* be computed also there.
|
||
|
*
|
||
|
* Starting values for calculations:
|
||
|
* - Asc ecliptic longitude
|
||
|
* - right ascension of MC (RAMC)
|
||
|
* - geographic latitude.
|
||
|
*/
|
||
|
/*
|
||
|
* within polar circle we swap AC/DC if AC is on wrong side
|
||
|
*/
|
||
|
acmc = swe_difdeg2n(hsp->ac, hsp->mc);
|
||
|
if (acmc < 0) {
|
||
|
hsp->ac = swe_degnorm(hsp->ac + 180);
|
||
|
}
|
||
|
/* A0. Start point - ecliptic coords of ascendant */
|
||
|
x[0] = hsp->ac; /* Asc longitude */
|
||
|
x[1] = 0.0; /* Asc declination */
|
||
|
x[2] = 1.0; /* Radius to test validity of subsequent transformations. */
|
||
|
swe_cotrans(x, x, -ekl); /* A1. Transform into equatorial coords */
|
||
|
x[0] = x[0] - (th - 90); /* A2. Rotate */
|
||
|
swe_cotrans(x, x, -(90 - fi)); /* A3. Transform into horizontal coords */
|
||
|
krHorizonLon = x[0]; /* ...save asc lon on horizon to get back later with house cusp */
|
||
|
x[0] = x[0] - x[0]; /* A4. Rotate */
|
||
|
swe_cotrans(x, x, -90); /* A5. Transform into this house system great circle (asc-zenith) */
|
||
|
/* As it is house circle now, simple add 30 deg increments... */
|
||
|
for (i = 0; i < 6; i++) {
|
||
|
/* B0. Set 'n-th' house cusp.
|
||
|
* Note that IC/MC are also calculated here to check
|
||
|
* if really this is the asc-zenith great circle. */
|
||
|
x[0] = 30.0 * i;
|
||
|
x[1] = 0.0;
|
||
|
swe_cotrans(x, x, 90); /* B1. Transform back into horizontal coords */
|
||
|
x[0] = x[0] + krHorizonLon; /* B2. Rotate back. */
|
||
|
swe_cotrans(x, x, 90 - fi); /* B3. Transform back into equatorial coords */
|
||
|
x[0] = swe_degnorm(x[0] + (th - 90)); /* B4. Rotate back -> RA of house cusp as result. */
|
||
|
/* B5. Where's this house cusp on ecliptic? */
|
||
|
/* ... so last but not least - get ecliptic longitude of house cusp: */
|
||
|
hsp->cusp[i + 1] = atand(tand(x[0]) / cosd(ekl));
|
||
|
if (x[0] > 90 && x[0] <= 270)
|
||
|
hsp->cusp[i + 1] = swe_degnorm(hsp->cusp[i + 1] + 180);
|
||
|
hsp->cusp[i + 1] = swe_degnorm(hsp->cusp[i + 1]);
|
||
|
hsp->cusp[i + 7] = swe_degnorm(hsp->cusp[i + 1] + 180);
|
||
|
}
|
||
|
break;
|
||
|
default: /* Placidus houses */
|
||
|
#ifndef _WINDOWS
|
||
|
if (hsy != 'P')
|
||
|
fprintf(stderr, "swe_houses: make Placidus, unknown key %c\n",
|
||
|
hsy);
|
||
|
#endif
|
||
|
if (fabs(fi) >= 90 - ekl) { /* within polar circle */
|
||
|
retc = ERR;
|
||
|
goto porphyry;
|
||
|
}
|
||
|
a = asind(tand(fi) * tane);
|
||
|
fh1 = atand(sind(a / 3) / tane);
|
||
|
fh2 = atand(sind(a * 2 / 3) / tane);
|
||
|
/* ************ house 11 ******************** */
|
||
|
rectasc = swe_degnorm(30 + th);
|
||
|
tant = tand(asind(sine * sind(Asc1(rectasc, fh1, sine, cose))));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[11] = rectasc;
|
||
|
}
|
||
|
else {
|
||
|
/* pole height */
|
||
|
f = atand(sind(asind(tanfi * tant) / 3) / tant);
|
||
|
hsp->cusp[11] = Asc1(rectasc, f, sine, cose);
|
||
|
for (i = 1; i <= iteration_count; i++) {
|
||
|
tant = tand(asind(sine * sind(hsp->cusp[11])));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[11] = rectasc;
|
||
|
break;
|
||
|
}
|
||
|
/* pole height */
|
||
|
f = atand(sind(asind(tanfi * tant) / 3) / tant);
|
||
|
hsp->cusp[11] = Asc1(rectasc, f, sine, cose);
|
||
|
}
|
||
|
}
|
||
|
/* ************ house 12 ******************** */
|
||
|
rectasc = swe_degnorm(60 + th);
|
||
|
tant = tand(asind(sine * sind(Asc1(rectasc, fh2, sine, cose))));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[12] = rectasc;
|
||
|
}
|
||
|
else {
|
||
|
f = atand(sind(asind(tanfi * tant) / 1.5) / tant);
|
||
|
/* pole height */
|
||
|
hsp->cusp[12] = Asc1(rectasc, f, sine, cose);
|
||
|
for (i = 1; i <= iteration_count; i++) {
|
||
|
tant = tand(asind(sine * sind(hsp->cusp[12])));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[12] = rectasc;
|
||
|
break;
|
||
|
}
|
||
|
f = atand(sind(asind(tanfi * tant) / 1.5) / tant);
|
||
|
/* pole height */
|
||
|
hsp->cusp[12] = Asc1(rectasc, f, sine, cose);
|
||
|
}
|
||
|
}
|
||
|
/* ************ house 2 ******************** */
|
||
|
rectasc = swe_degnorm(120 + th);
|
||
|
tant = tand(asind(sine * sind(Asc1(rectasc, fh2, sine, cose))));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[2] = rectasc;
|
||
|
}
|
||
|
else {
|
||
|
f = atand(sind(asind(tanfi * tant) / 1.5) / tant);
|
||
|
/* pole height */
|
||
|
hsp->cusp[2] = Asc1(rectasc, f, sine, cose);
|
||
|
for (i = 1; i <= iteration_count; i++) {
|
||
|
tant = tand(asind(sine * sind(hsp->cusp[2])));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[2] = rectasc;
|
||
|
break;
|
||
|
}
|
||
|
f = atand(sind(asind(tanfi * tant) / 1.5) / tant);
|
||
|
/* pole height */
|
||
|
hsp->cusp[2] = Asc1(rectasc, f, sine, cose);
|
||
|
}
|
||
|
}
|
||
|
/* ************ house 3 ******************** */
|
||
|
rectasc = swe_degnorm(150 + th);
|
||
|
tant = tand(asind(sine * sind(Asc1(rectasc, fh1, sine, cose))));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[3] = rectasc;
|
||
|
}
|
||
|
else {
|
||
|
f = atand(sind(asind(tanfi * tant) / 3) / tant);
|
||
|
/* pole height */
|
||
|
hsp->cusp[3] = Asc1(rectasc, f, sine, cose);
|
||
|
for (i = 1; i <= iteration_count; i++) {
|
||
|
tant = tand(asind(sine * sind(hsp->cusp[3])));
|
||
|
if (fabs(tant) < VERY_SMALL) {
|
||
|
hsp->cusp[3] = rectasc;
|
||
|
break;
|
||
|
}
|
||
|
f = atand(sind(asind(tanfi * tant) / 3) / tant);
|
||
|
/* pole height */
|
||
|
hsp->cusp[3] = Asc1(rectasc, f, sine, cose);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
} /* end switch */
|
||
|
if (hsy != 'G') {
|
||
|
hsp->cusp[4] = swe_degnorm(hsp->cusp[10] + 180);
|
||
|
hsp->cusp[5] = swe_degnorm(hsp->cusp[11] + 180);
|
||
|
hsp->cusp[6] = swe_degnorm(hsp->cusp[12] + 180);
|
||
|
hsp->cusp[7] = swe_degnorm(hsp->cusp[1] + 180);
|
||
|
hsp->cusp[8] = swe_degnorm(hsp->cusp[2] + 180);
|
||
|
hsp->cusp[9] = swe_degnorm(hsp->cusp[3] + 180);
|
||
|
}
|
||
|
/* vertex */
|
||
|
if (fi >= 0)
|
||
|
f = 90 - fi;
|
||
|
else
|
||
|
f = -90 - fi;
|
||
|
hsp->vertex = Asc1(th - 90, f, sine, cose);
|
||
|
/* with tropical latitudes, the vertex behaves strange,
|
||
|
* in a similar way as the ascendant within the polar
|
||
|
* circle. we keep it always on the western hemisphere.*/
|
||
|
if (fabs(fi) <= ekl) {
|
||
|
vemc = swe_difdeg2n(hsp->vertex, hsp->mc);
|
||
|
if (vemc > 0)
|
||
|
hsp->vertex = swe_degnorm(hsp->vertex + 180);
|
||
|
}
|
||
|
/*
|
||
|
* some strange points:
|
||
|
*/
|
||
|
/* equasc (equatorial ascendant) */
|
||
|
th2 = swe_degnorm(th + 90);
|
||
|
if (fabs(th2 - 90) > VERY_SMALL && fabs(th2 - 270) > VERY_SMALL) {
|
||
|
tant = tand(th2);
|
||
|
hsp->equasc = atand(tant / cose);
|
||
|
if (th2 > 90 && th2 <= 270)
|
||
|
hsp->equasc = swe_degnorm(hsp->equasc + 180);
|
||
|
}
|
||
|
else {
|
||
|
if (fabs(th2 - 90) <= VERY_SMALL)
|
||
|
hsp->equasc = 90;
|
||
|
else
|
||
|
hsp->equasc = 270;
|
||
|
} /* if */
|
||
|
hsp->equasc = swe_degnorm(hsp->equasc);
|
||
|
/* "co-ascendant" W. Koch */
|
||
|
hsp->coasc1 = swe_degnorm(Asc1(th - 90, fi, sine, cose) + 180);
|
||
|
/* "co-ascendant" M. Munkasey */
|
||
|
if (fi >= 0)
|
||
|
hsp->coasc2 = Asc1(th + 90, 90 - fi, sine, cose);
|
||
|
else /* southern hemisphere */
|
||
|
hsp->coasc2 = Asc1(th + 90, -90 - fi, sine, cose);
|
||
|
/* "polar ascendant" M. Munkasey */
|
||
|
hsp->polasc = Asc1(th - 90, fi, sine, cose);
|
||
|
return retc;
|
||
|
} /* procedure houses */
|
||
|
|
||
|
/******************************/
|
||
|
static double
|
||
|
Asc1(double x1, double f, double sine, double cose)
|
||
|
{
|
||
|
int n;
|
||
|
double ass;
|
||
|
x1 = swe_degnorm(x1);
|
||
|
n = (int)((x1 / 90) + 1);
|
||
|
if (n == 1)
|
||
|
ass = (Asc2(x1, f, sine, cose));
|
||
|
else if (n == 2)
|
||
|
ass = (180 - Asc2(180 - x1, -f, sine, cose));
|
||
|
else if (n == 3)
|
||
|
ass = (180 + Asc2(x1 - 180, -f, sine, cose));
|
||
|
else
|
||
|
ass = (360 - Asc2(360 - x1, f, sine, cose));
|
||
|
ass = swe_degnorm(ass);
|
||
|
if (fabs(ass - 90) < VERY_SMALL) /* rounding, e.g.: if */
|
||
|
ass = 90; /* fi = 0 & st = 0, ac = 89.999... */
|
||
|
if (fabs(ass - 180) < VERY_SMALL)
|
||
|
ass = 180;
|
||
|
if (fabs(ass - 270) < VERY_SMALL) /* rounding, e.g.: if */
|
||
|
ass = 270; /* fi = 0 & st = 0, ac = 89.999... */
|
||
|
if (fabs(ass - 360) < VERY_SMALL)
|
||
|
ass = 0;
|
||
|
return ass;
|
||
|
} /* Asc1 */
|
||
|
|
||
|
static double
|
||
|
Asc2(double x, double f, double sine, double cose)
|
||
|
{
|
||
|
double ass, sinx;
|
||
|
ass = -tand(f) * sine + cose * cosd(x);
|
||
|
if (fabs(ass) < VERY_SMALL)
|
||
|
ass = 0;
|
||
|
sinx = sind(x);
|
||
|
if (fabs(sinx) < VERY_SMALL)
|
||
|
sinx = 0;
|
||
|
if (sinx == 0) {
|
||
|
if (ass < 0)
|
||
|
ass = -VERY_SMALL;
|
||
|
else
|
||
|
ass = VERY_SMALL;
|
||
|
}
|
||
|
else if (ass == 0) {
|
||
|
if (sinx < 0)
|
||
|
ass = -90;
|
||
|
else
|
||
|
ass = 90;
|
||
|
}
|
||
|
else {
|
||
|
ass = atand(sinx / ass);
|
||
|
}
|
||
|
if (ass < 0)
|
||
|
ass = 180 + ass;
|
||
|
return (ass);
|
||
|
} /* Asc2 */
|
||
|
|
||
|
|
||
|
/* Computes the house position of a planet or another point,
|
||
|
* in degrees: 0 - 30 = 1st house, 30 - 60 = 2nd house, etc.
|
||
|
* armc sidereal time in degrees
|
||
|
* geolat geographic latitude
|
||
|
* eps true ecliptic obliquity
|
||
|
* hsys house system character
|
||
|
* xpin array of 6 doubles:
|
||
|
* only the first two of them are used: ecl. long., lat.
|
||
|
* serr error message area
|
||
|
*
|
||
|
* House position is returned by function.
|
||
|
*
|
||
|
* IMPORTANT: This function should NOT be used for sidereal astrology.
|
||
|
* If you cannot avoid doing so, please note:
|
||
|
* - The input longitudes (xpin) MUST always be tropical, even if you
|
||
|
* are a siderealist.
|
||
|
* - Sidereal and tropical house positions are identical for most house
|
||
|
* systems, if a traditional definition of the sidereal zodiac is used
|
||
|
* (sid = trop - ayanamsa).
|
||
|
* - The function does NOT provide correct positions for Whole Sign houses.
|
||
|
* - The function does NOT provide correct positions, if you use a
|
||
|
* non-traditional sidereal method (where the sidereal plane is not
|
||
|
* identical to the ecliptic of date) with a house system whose definition
|
||
|
* is dependent on the ecliptic, such as:
|
||
|
* equal, Porphyry, Alcabitius, Koch, Krusinski (all others should work).
|
||
|
* The Swiss Ephemeris currently does not handle these cases.
|
||
|
*/
|
||
|
double FAR PASCAL_CONV
|
||
|
swe_house_pos(double armc, double geolat, double eps, int hsys, double *xpin,
|
||
|
char *serr)
|
||
|
{
|
||
|
double xp[6], xeq[6], ra, de, mdd, mdn, sad, san;
|
||
|
double hpos, sinad, ad, a, admc, adp, samc, demc, asc, mc, acmc, tant;
|
||
|
double fh, ra0, tanfi, fac, dfac;
|
||
|
double x[3], xasc[3], raep, raaz, oblaz, xtemp; /* BK 21.02.2006 */
|
||
|
double sine = sind(eps);
|
||
|
double cose = cosd(eps);
|
||
|
AS_BOOL is_above_hor = FALSE;
|
||
|
AS_BOOL is_invalid = FALSE;
|
||
|
AS_BOOL is_circumpolar = FALSE;
|
||
|
if (serr != NULL)
|
||
|
*serr = '\0';
|
||
|
hsys = toupper(hsys);
|
||
|
xeq[0] = xpin[0];
|
||
|
xeq[1] = xpin[1];
|
||
|
xeq[2] = 1;
|
||
|
swe_cotrans(xpin, xeq, -eps);
|
||
|
ra = xeq[0];
|
||
|
de = xeq[1];
|
||
|
mdd = swe_degnorm(ra - armc);
|
||
|
mdn = swe_degnorm(mdd + 180);
|
||
|
if (mdd >= 180)
|
||
|
mdd -= 360;
|
||
|
if (mdn >= 180)
|
||
|
mdn -= 360;
|
||
|
/* xp[0] will contain the house position, a value between 0 and 360 */
|
||
|
switch (hsys) {
|
||
|
case 'A':
|
||
|
case 'E':
|
||
|
case 'V':
|
||
|
case 'W':
|
||
|
asc = Asc1(swe_degnorm(armc + 90), geolat, sine, cose);
|
||
|
demc = atand(sind(armc) * tand(eps));
|
||
|
if (geolat >= 0 && 90 - geolat + demc < 0)
|
||
|
asc = swe_degnorm(asc + 180);
|
||
|
if (geolat < 0 && -90 - geolat + demc > 0)
|
||
|
asc = swe_degnorm(asc + 180);
|
||
|
xp[0] = swe_degnorm(xpin[0] - asc);
|
||
|
if (hsys == 'V')
|
||
|
xp[0] = swe_degnorm(xp[0] + 15);
|
||
|
if (hsys == 'W')
|
||
|
xp[0] = swe_degnorm(xp[0] + fmod(asc, 30));
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
hpos = xp[0] / 30.0 + 1;
|
||
|
break;
|
||
|
case 'O': /* Porphyry */
|
||
|
case 'B': /* Alcabitius */
|
||
|
asc = Asc1(swe_degnorm(armc + 90), geolat, sine, cose);
|
||
|
demc = atand(sind(armc) * tand(eps));
|
||
|
/* mc */
|
||
|
if (fabs(armc - 90) > VERY_SMALL && fabs(armc - 270) > VERY_SMALL) {
|
||
|
tant = tand(armc);
|
||
|
mc = swe_degnorm(atand(tant / cose));
|
||
|
if (armc > 90 && armc <= 270)
|
||
|
mc = swe_degnorm(mc + 180);
|
||
|
}
|
||
|
else {
|
||
|
if (fabs(armc - 90) <= VERY_SMALL)
|
||
|
mc = 90;
|
||
|
else
|
||
|
mc = 270;
|
||
|
}
|
||
|
/* while MC is always south,
|
||
|
* Asc must always be in eastern hemisphere */
|
||
|
if (geolat >= 0 && 90 - geolat + demc < 0) {
|
||
|
asc = swe_degnorm(asc + 180);
|
||
|
}
|
||
|
if (geolat < 0 && -90 - geolat + demc > 0) {
|
||
|
asc = swe_degnorm(asc + 180);
|
||
|
}
|
||
|
if (hsys == 'O') {
|
||
|
xp[0] = swe_degnorm(xpin[0] - asc);
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
if (xp[0] < 180)
|
||
|
hpos = 1;
|
||
|
else {
|
||
|
hpos = 7;
|
||
|
xp[0] -= 180;
|
||
|
}
|
||
|
acmc = swe_difdeg2n(asc, mc);
|
||
|
if (xp[0] < 180 - acmc)
|
||
|
hpos += xp[0] * 3 / (180 - acmc);
|
||
|
else
|
||
|
hpos += 3 + (xp[0] - 180 + acmc) * 3 / acmc;
|
||
|
}
|
||
|
else { /* Alcabitius */
|
||
|
double dek, r, sna, sda;
|
||
|
dek = asind(sind(asc) * sine); /* declination of Ascendant */
|
||
|
/* must treat the case fi == 90 or -90 */
|
||
|
tanfi = tand(geolat);
|
||
|
r = -tanfi * tand(dek);
|
||
|
/* must treat the case of abs(r) > 1; probably does not happen
|
||
|
* because dek becomes smaller when fi is large, as ac is close to
|
||
|
* zero Aries/Libra in that case.
|
||
|
*/
|
||
|
sda = acos(r) * RADTODEG; /* semidiurnal arc, measured on equator */
|
||
|
sna = 180 - sda; /* complement, seminocturnal arc */
|
||
|
if (mdd > 0) {
|
||
|
if (mdd < sda)
|
||
|
hpos = mdd * 90 / sda;
|
||
|
else
|
||
|
hpos = 90 + (mdd - sda) * 90 / sna;
|
||
|
}
|
||
|
else {
|
||
|
if (mdd > -sna)
|
||
|
hpos = 360 + mdd * 90 / sna;
|
||
|
else
|
||
|
hpos = 270 + (mdd + sna) * 90 / sda;
|
||
|
}
|
||
|
hpos = swe_degnorm(hpos - 90) / 30.0 + 1.0;
|
||
|
if (hpos >= 13.0)
|
||
|
hpos -= 12;
|
||
|
}
|
||
|
break;
|
||
|
case 'X': /* Merdidian or axial rotation system */
|
||
|
hpos = swe_degnorm(mdd - 90) / 30.0 + 1.0;
|
||
|
break;
|
||
|
case 'M':{ /* Morinus */
|
||
|
double a = xpin[0];
|
||
|
if (fabs(a - 90) > VERY_SMALL && fabs(a - 270) > VERY_SMALL) {
|
||
|
tant = tand(a);
|
||
|
hpos = atand(tant / cose);
|
||
|
if (a > 90 && a <= 270)
|
||
|
hpos = swe_degnorm(hpos + 180);
|
||
|
}
|
||
|
else {
|
||
|
if (fabs(a - 90) <= VERY_SMALL)
|
||
|
hpos = 90;
|
||
|
else
|
||
|
hpos = 270;
|
||
|
} /* if */
|
||
|
hpos = swe_degnorm(hpos - armc - 90);
|
||
|
hpos = hpos / 30.0 + 1;
|
||
|
}
|
||
|
break;
|
||
|
#if 0
|
||
|
/* old version of Koch method */
|
||
|
case 'K':
|
||
|
demc = atand(sind(armc) * tand(eps));
|
||
|
/* if body is within circumpolar region, error */
|
||
|
if (90 - fabs(geolat) <= fabs(de)) {
|
||
|
if (serr != NULL)
|
||
|
strcpy(serr,
|
||
|
"no Koch house position, because planet is circumpolar.");
|
||
|
xp[0] = 0;
|
||
|
hpos = 0; /* Error */
|
||
|
}
|
||
|
else if (90 - fabs(geolat) <= fabs(demc)) {
|
||
|
if (serr != NULL)
|
||
|
strcpy(serr,
|
||
|
"no Koch house position, because mc is circumpolar.");
|
||
|
xp[0] = 0;
|
||
|
hpos = 0; /* Error */
|
||
|
}
|
||
|
else {
|
||
|
admc = asind(tand(eps) * tand(geolat) * sind(armc));
|
||
|
adp = asind(tand(geolat) * tand(de));
|
||
|
samc = 90 + admc;
|
||
|
if (mdd >= 0) { /* east */
|
||
|
xp[0] = swe_degnorm(((mdd - adp + admc) / samc - 1) * 90);
|
||
|
}
|
||
|
else {
|
||
|
xp[0] =
|
||
|
swe_degnorm(((mdd + 180 + adp + admc) / samc +
|
||
|
1) * 90);
|
||
|
}
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
hpos = xp[0] / 30.0 + 1;
|
||
|
}
|
||
|
break;
|
||
|
#endif
|
||
|
/* version of Koch method: do calculations within circumpolar circle,
|
||
|
* if possible; make sure house positions 4 - 9 only appear on western
|
||
|
* hemisphere */
|
||
|
case 'K':
|
||
|
demc = atand(sind(armc) * tand(eps));
|
||
|
is_invalid = FALSE;
|
||
|
is_circumpolar = FALSE;
|
||
|
/* object is within a circumpolar circle */
|
||
|
if (90 - geolat < de || -90 - geolat > de) {
|
||
|
adp = 90;
|
||
|
is_circumpolar = TRUE;
|
||
|
}
|
||
|
/* object is within a circumpolar circle, southern hemisphere */
|
||
|
else if (geolat - 90 > de || geolat + 90 < de) {
|
||
|
adp = -90;
|
||
|
is_circumpolar = TRUE;
|
||
|
}
|
||
|
/* object does rise and set */
|
||
|
else {
|
||
|
adp = asind(tand(geolat) * tand(de));
|
||
|
}
|
||
|
#if 0
|
||
|
if (fabs(adp) == 90)
|
||
|
is_invalid = TRUE; /* omit this to use the above values */
|
||
|
#endif
|
||
|
admc = tand(eps) * tand(geolat) * sind(armc);
|
||
|
/* midheaven is circumpolar */
|
||
|
if (fabs(admc) > 1) {
|
||
|
#if 0
|
||
|
is_invalid = TRUE; /* omit this line to use the below values */
|
||
|
#endif
|
||
|
if (admc > 1)
|
||
|
admc = 1;
|
||
|
else
|
||
|
admc = -1;
|
||
|
is_circumpolar = TRUE;
|
||
|
}
|
||
|
admc = asind(admc);
|
||
|
samc = 90 + admc;
|
||
|
if (samc == 0)
|
||
|
is_invalid = TRUE;
|
||
|
if (fabs(samc) > 0) {
|
||
|
if (mdd >= 0) { /* east */
|
||
|
dfac = (mdd - adp + admc) / samc;
|
||
|
xp[0] = swe_degnorm((dfac - 1) * 90);
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
/* eastern object has longer SA than midheaven */
|
||
|
if (dfac > 2 || dfac < 0)
|
||
|
is_invalid = TRUE; /* if this is omitted, funny things happen */
|
||
|
}
|
||
|
else {
|
||
|
dfac = (mdd + 180 + adp + admc) / samc;
|
||
|
xp[0] = swe_degnorm((dfac + 1) * 90);
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
/* western object has longer SA than midheaven */
|
||
|
if (dfac > 2 || dfac < 0)
|
||
|
is_invalid = TRUE; /* if this is omitted, funny things happen */
|
||
|
}
|
||
|
}
|
||
|
if (is_invalid) {
|
||
|
xp[0] = 0;
|
||
|
hpos = 0;
|
||
|
if (serr != NULL)
|
||
|
strcpy(serr,
|
||
|
"Koch house position failed in circumpolar area");
|
||
|
break;
|
||
|
}
|
||
|
if (is_circumpolar) {
|
||
|
if (serr != NULL)
|
||
|
strcpy(serr,
|
||
|
"Koch house position, doubtful result in circumpolar area");
|
||
|
}
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
hpos = xp[0] / 30.0 + 1;
|
||
|
break;
|
||
|
case 'C':
|
||
|
xeq[0] = swe_degnorm(mdd - 90);
|
||
|
swe_cotrans(xeq, xp, -geolat);
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
hpos = xp[0] / 30.0 + 1;
|
||
|
break;
|
||
|
case 'U': /* Krusinski-Pisa-Goelzer */
|
||
|
/* Purpose: find point where planet's house circle (meridian)
|
||
|
* cuts house plane, giving exact planet's house position.
|
||
|
* Input data: ramc, geolat, asc.
|
||
|
*/
|
||
|
asc = Asc1(swe_degnorm(armc + 90), geolat, sine, cose);
|
||
|
demc = atand(sind(armc) * tand(eps));
|
||
|
/* while MC is always south,
|
||
|
* Asc must always be in eastern hemisphere */
|
||
|
if (geolat >= 0 && 90 - geolat + demc < 0) {
|
||
|
asc = swe_degnorm(asc + 180);
|
||
|
}
|
||
|
if (geolat < 0 && -90 - geolat + demc > 0) {
|
||
|
asc = swe_degnorm(asc + 180);
|
||
|
}
|
||
|
/*
|
||
|
* Descr: find the house plane 'asc-zenith' - where it intersects
|
||
|
* with equator and at what angle, and then simple find arc
|
||
|
* from asc on that plane to planet's meridian intersection
|
||
|
* with this plane.
|
||
|
*/
|
||
|
/* I. find plane of 'asc-zenith' great circle relative to equator:
|
||
|
* solve spherical triangle 'EP-asc-intersection of house circle with equator' */
|
||
|
/* Ia. Find intersection of house plane with equator: */
|
||
|
x[0] = asc;
|
||
|
x[1] = 0.0;
|
||
|
x[2] = 1.0; /* 1. Start with ascendent on ecliptic */
|
||
|
swe_cotrans(x, x, -eps); /* 2. Transform asc into equatorial coords */
|
||
|
raep = swe_degnorm(armc + 90); /* 3. RA of east point */
|
||
|
x[0] = swe_degnorm(raep - x[0]); /* 4. Rotation - found arc raas-raep */
|
||
|
swe_cotrans(x, x, -(90 - geolat)); /* 5. Transform into horizontal coords - arc EP-asc on horizon */
|
||
|
xtemp = atand(tand(x[0]) / cosd((90 - geolat))); /* 6. Rotation from horizon on circle perpendicular to equator */
|
||
|
if (x[0] > 90 && x[0] <= 270)
|
||
|
xtemp = swe_degnorm(xtemp + 180);
|
||
|
x[0] = swe_degnorm(xtemp);
|
||
|
raaz = swe_degnorm(raep - x[0]); /* result: RA of intersection 'asc-zenith' great circle with equator */
|
||
|
/* Ib. Find obliquity to equator of 'asc-zenith' house plane: */
|
||
|
x[0] = raaz;
|
||
|
x[1] = 0.0;
|
||
|
x[0] = swe_degnorm(raep - x[0]); /* 1. Rotate start point relative to EP */
|
||
|
swe_cotrans(x, x, -(90 - geolat)); /* 2. Transform into horizontal coords */
|
||
|
x[1] = x[1] + 90; /* 3. Add 90 deg do decl - so get the point on house plane most distant from equ. */
|
||
|
swe_cotrans(x, x, 90 - geolat); /* 4. Rotate back to equator */
|
||
|
oblaz = x[1]; /* 5. Obliquity of house plane to equator */
|
||
|
/* II. Next find asc and planet position on house plane,
|
||
|
* so to find relative distance of planet from
|
||
|
* coords beginning. */
|
||
|
/* IIa. Asc on house plane relative to intersection
|
||
|
* of equator with 'asc-zenith' plane. */
|
||
|
xasc[0] = asc;
|
||
|
xasc[1] = 0.0;
|
||
|
xasc[2] = 1.0;
|
||
|
swe_cotrans(xasc, xasc, -eps);
|
||
|
xasc[0] = swe_degnorm(xasc[0] - raaz);
|
||
|
xtemp = atand(tand(xasc[0]) / cosd(oblaz));
|
||
|
if (xasc[0] > 90 && xasc[0] <= 270)
|
||
|
xtemp = swe_degnorm(xtemp + 180);
|
||
|
xasc[0] = swe_degnorm(xtemp);
|
||
|
/* IIb. Planet on house plane relative to intersection
|
||
|
* of equator with 'asc-zenith' plane */
|
||
|
xp[0] = swe_degnorm(xeq[0] - raaz); /* Rotate on equator */
|
||
|
xtemp = atand(tand(xp[0]) / cosd(oblaz)); /* Find arc on house plane from equator */
|
||
|
if (xp[0] > 90 && xp[0] <= 270)
|
||
|
xtemp = swe_degnorm(xtemp + 180);
|
||
|
xp[0] = swe_degnorm(xtemp);
|
||
|
xp[0] = swe_degnorm(xp[0] - xasc[0]); /* find arc between asc and planet, and get planet house position */
|
||
|
/* IIc. Distance from planet to house plane on declination circle: */
|
||
|
x[0] = xeq[0];
|
||
|
x[1] = xeq[1];
|
||
|
swe_cotrans(x, x, oblaz);
|
||
|
xp[1] = xeq[1] - x[1]; /* How many degrees is the point on declination circle from house circle */
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
hpos = xp[0] / 30.0 + 1;
|
||
|
break;
|
||
|
case 'H':
|
||
|
xeq[0] = swe_degnorm(mdd - 90);
|
||
|
swe_cotrans(xeq, xp, 90 - geolat);
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
hpos = xp[0] / 30.0 + 1;
|
||
|
break;
|
||
|
case 'R':
|
||
|
if (fabs(mdd) < VERY_SMALL)
|
||
|
xp[0] = 270;
|
||
|
else if (180 - fabs(mdd) < VERY_SMALL)
|
||
|
xp[0] = 90;
|
||
|
else {
|
||
|
if (90 - fabs(geolat) < VERY_SMALL) {
|
||
|
if (geolat > 0)
|
||
|
geolat = 90 - VERY_SMALL;
|
||
|
else
|
||
|
geolat = -90 + VERY_SMALL;
|
||
|
}
|
||
|
if (90 - fabs(de) < VERY_SMALL) {
|
||
|
if (de > 0)
|
||
|
de = 90 - VERY_SMALL;
|
||
|
else
|
||
|
de = -90 + VERY_SMALL;
|
||
|
}
|
||
|
a = tand(geolat) * tand(de) + cosd(mdd);
|
||
|
xp[0] = swe_degnorm(atand(-a / sind(mdd)));
|
||
|
if (mdd < 0)
|
||
|
xp[0] += 180;
|
||
|
xp[0] = swe_degnorm(xp[0]);
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
}
|
||
|
hpos = xp[0] / 30.0 + 1;
|
||
|
break;
|
||
|
case 'T':
|
||
|
mdd = swe_degnorm(mdd);
|
||
|
if (de > 90 - VERY_SMALL)
|
||
|
de = 90 - VERY_SMALL;
|
||
|
if (de < -90 + VERY_SMALL)
|
||
|
de = -90 + VERY_SMALL;
|
||
|
sinad = tand(de) * tand(geolat);
|
||
|
ad = asind(sinad);
|
||
|
a = sinad + cosd(mdd);
|
||
|
if (a >= 0)
|
||
|
is_above_hor = TRUE;
|
||
|
/* mirror everything below the horizon to the opposite point
|
||
|
* above the horizon */
|
||
|
if (!is_above_hor) {
|
||
|
ra = swe_degnorm(ra + 180);
|
||
|
de = -de;
|
||
|
mdd = swe_degnorm(mdd + 180);
|
||
|
}
|
||
|
/* mirror everything on western hemisphere to eastern hemisphere */
|
||
|
if (mdd > 180) {
|
||
|
ra = swe_degnorm(armc - mdd);
|
||
|
}
|
||
|
/* binary search for "topocentric" position line of body */
|
||
|
tanfi = tand(geolat);
|
||
|
fh = geolat;
|
||
|
ra0 = swe_degnorm(armc + 90);
|
||
|
xp[1] = 1;
|
||
|
xeq[1] = de;
|
||
|
fac = 2;
|
||
|
while (fabs(xp[1]) > 0.000001) {
|
||
|
if (xp[1] > 0) {
|
||
|
fh = atand(tand(fh) - tanfi / fac);
|
||
|
ra0 -= 90 / fac;
|
||
|
}
|
||
|
else {
|
||
|
fh = atand(tand(fh) + tanfi / fac);
|
||
|
ra0 += 90 / fac;
|
||
|
}
|
||
|
xeq[0] = swe_degnorm(ra - ra0);
|
||
|
swe_cotrans(xeq, xp, 90 - fh);
|
||
|
fac *= 2;
|
||
|
}
|
||
|
hpos = swe_degnorm(ra0 - armc);
|
||
|
/* mirror back to west */
|
||
|
if (mdd > 180)
|
||
|
hpos = swe_degnorm(-hpos);
|
||
|
/* mirror back to below horizon */
|
||
|
if (!is_above_hor)
|
||
|
hpos = swe_degnorm(hpos + 180);
|
||
|
hpos = swe_degnorm(hpos - 90) / 30 + 1;
|
||
|
break;
|
||
|
case 'P':
|
||
|
case 'G':
|
||
|
default:
|
||
|
/* circumpolar region */
|
||
|
if (90 - fabs(de) <= fabs(geolat)) {
|
||
|
if (de * geolat < 0)
|
||
|
xp[0] = swe_degnorm(90 + mdn / 2);
|
||
|
else
|
||
|
xp[0] = swe_degnorm(270 + mdd / 2);
|
||
|
if (serr != NULL)
|
||
|
strcpy(serr,
|
||
|
"Otto Ludwig procedure within circumpolar regions.");
|
||
|
}
|
||
|
else {
|
||
|
sinad = tand(de) * tand(geolat);
|
||
|
ad = asind(sinad);
|
||
|
a = sinad + cosd(mdd);
|
||
|
if (a >= 0)
|
||
|
is_above_hor = TRUE;
|
||
|
sad = 90 + ad;
|
||
|
san = 90 - ad;
|
||
|
if (is_above_hor)
|
||
|
xp[0] = (mdd / sad + 3) * 90;
|
||
|
else
|
||
|
xp[0] = (mdn / san + 1) * 90;
|
||
|
/* to make sure that a call with a house cusp position returns
|
||
|
* a value within the house, 0.001" is added */
|
||
|
xp[0] = swe_degnorm(xp[0] + MILLIARCSEC);
|
||
|
}
|
||
|
if (hsys == 'G') {
|
||
|
xp[0] = 360 - xp[0]; /* Gauquelin sectors are in clockwise direction */
|
||
|
hpos = xp[0] / 10.0 + 1;
|
||
|
}
|
||
|
else {
|
||
|
hpos = xp[0] / 30.0 + 1;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
return hpos;
|
||
|
}
|