--- layout: reference ---
Git is all about composing and saving snapshots of your project and then working with and comparing those snapshots. This section will explain the commands needed to compose and commit snapshots of your project.
An important concept here is that Git has an 'index', which acts as sort of a staging area for your snapshot. This allows you to build up a series of well composed snapshots from changed files in your working directory, rather than having to commit all of the file changes at once.
In a nutshell, you will use git add
to start tracking new
files and also to stage changes to already tracked files, then
git status
and git diff
to see what has been
modified and staged and finally git commit
to record your
snapshot into your history. This will be the basic workflow that you use
most of the time.
In Git, you have to add file contents to your staging area before you
can commit them. If the file is new, you can run git add
to initially add the file to your staging area, but even if the file
is already "tracked" - ie, it was in your last commit - you still need
to call git add
to add new modifications to your staging
area. Let's see a few examples of this.
Going back to our Hello World example, once we've initiated the project,
we would now start adding our files to it and we would do that with
git add
. We can use git status
to see what the
state of our project is.
$ git status -s ?? README ?? hello.rbSo right now we have two untracked files. We can now add them.
$ git add README hello.rbNow if we run
git status
again, we'll see that they've been
added.
$ git status -s A README A hello.rb
OK, so now if we edit one of these files and run git status
again, we will see something odd.
$ vim README $ git status -s AM README A hello.rb
The 'AM' status means that the file has been modified on disk since we
last added it. This means that if we commit our snapshot right now, we will
be recording the version of the file when we last ran git add
,
not the version that is on our disk. Git does not assume that what the file
looks like on disk is neccesarily what you want to snapshot - you have to
tell Git with the git add
command.
In a nutshell,
you run git add
on a file when you want to
include whatever changes you've made to it in your next commit snapshot.
Anything you've changed that is not added will not be included - this means
you can craft your snapshots with a bit more precision than most other SCM
systems.
For a very interesting example of using this flexibility to stage only
parts of modified files at a time, see the '-p' option to
git add
in the Pro Git book.
As you saw in the git add
section, in order to see what the
status of your staging area is compared to the code in your working
directory, you can run the git status
command. I demonstrated
using it with the -s
option, which gives you short output.
Without that flag, the git status
command will give you more
context and hints. Here is the same status output with and without the
-s
. The short output looks like this:
$ git status -s AM README A hello.rbWhere the same status with the long output looks like this:
$ git status # On branch master # # Initial commit # # Changes to be committed: # (use "git rm --cached..." to unstage) # # new file: README # new file: hello.rb # # Changed but not updated: # (use "git add ..." to update what will be committed) # (use "git checkout -- ..." to discard changes in working directory) # # modified: README #
You can easily see how much more compact the short output is, but the long output has useful tips and hints as to what commands you may want to use next.
Git will also tell you about files that were deleted since your last commit or files that were modified or staged since your last commit.
$ git status -s M README D hello.rbYou can see there are two columns in the short status output. The first column is for the staging area, the second is for the working directory. So for example, if you have the README file staged and then you modify it again without running
git add
a second time, you'll see
this:
$ git status -s MM README D hello.rb
In a nutshell,
you run git status
to see if anything has been modified
and/or staged since your last commit so you can decide if you want to
commit a new snapshot and what will be recorded in it.
There are two main uses of the git diff
command. One use we
will describe here, the other we will describe later in the
"Inspection and Comparison"
section. The way we're going to use it here is to describe the
changes that are staged or modified on disk but unstaged.
Without any extra arguments, a simple git diff
will display
in unified diff format (a patch) what code or content you've changed in your
project since the last commit that are not yet staged for the next commit
snapshot.
$ vim hello.rb $ git status -s M hello.rb $ git diff diff --git a/hello.rb b/hello.rb index d62ac43..8d15d50 100644 --- a/hello.rb +++ b/hello.rb @@ -1,7 +1,7 @@ class HelloWorld def self.hello - puts "hello world" + puts "hola mundo" end end
So where git status
will show you what files have changed
and/or been staged since your last commit, git diff
will
show you what those changes actually are, line by line. It's generally
a good follow-up command to git status
The git diff --cached
command will show you what contents
have been staged. That is, this will show you the changes that will
currently go into the next commit snapshot. So, if you were to stage
the change to hello.rb
in the example above,
git diff
by itself won't show you any output because it will
only show you what is not yet staged.
$ git status -s M hello.rb $ git add hello.rb $ git status -s M hello.rb $ git diff $
If you want to see the staged changes, you can run
git diff --cached
instead.
$ git status -s M hello.rb $ git diff $ $ git diff --cached diff --git a/hello.rb b/hello.rb index d62ac43..8d15d50 100644 --- a/hello.rb +++ b/hello.rb @@ -1,7 +1,7 @@ class HelloWorld def self.hello - puts "hello world" + puts "hola mundo" end end
If you want to see both staged and unstaged changes together, you
can run git diff HEAD
- this basically means you want to
see the difference between your working directory and the last commit,
ignoring the staging area. If we make another change to our
hello.rb
file then we'll have some changes staged and some
changes unstaged. Here are what all three diff
commands
will show you:
$ vim hello.rb $ git diff diff --git a/hello.rb b/hello.rb index 4f40006..2ae9ba4 100644 --- a/hello.rb +++ b/hello.rb @@ -1,7 +1,7 @@ class HelloWorld + # says hello def self.hello puts "hola mundo" end end $ git diff --cached diff --git a/hello.rb b/hello.rb index 2aabb6e..4f40006 100644 --- a/hello.rb +++ b/hello.rb @@ -1,7 +1,7 @@ class HelloWorld def self.hello - puts "hello world" + puts "hola mundo" end end $ git diff HEAD diff --git a/hello.rb b/hello.rb index 2aabb6e..2ae9ba4 100644 --- a/hello.rb +++ b/hello.rb @@ -1,7 +1,8 @@ class HelloWorld + # says hello def self.hello - puts "hello world" + puts "hola mundo" end end
You can also provide a file path at the end of any of these options
to limit the diff
output to a specific file or subdirectory.
In a nutshell,
you run git diff
to see details of the git status
command - how files have been modified or staged on a line by line
basis.